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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 24, Number 1, March 1959

 A COMPLETENESS THEOREM IN MODAL LOGIC'

 SAUL A. KRIPKE

 The present paper attempts to state and prove a completeness theorem

 for the system S5 of [1], supplemented by first-order quantifiers and the

 sign of equality. We assume that we possess a denumerably infinite list

 of individual variables a, b, C, ..., x, X, Z, ... Xm Yimn Zm, ... as well as a
 denumerably infinite list of n-adic predicate variables Pn, Qn, R",

 Pm", Qmn, Rmn, ...; if n=0, an n-adic predicate variable is often called a
 "propositional variable." A formula P"(x1, ..., x") is an n-adic prime
 formula; often the superscript will be omitted if such an omission does not

 sacrifice clarity. We adopt the primitive symbols A, --, El, (x), =, re-
 spectively representing conjunction, negation, necessity, universal quanti-
 fication, and identity; in terms of these and predicate variables we define

 the notion of a well-formed formula, or simply a formula, in the usual manner.

 Let A, B, C, etc. (with or without subscripts or accents) represent arbitrary
 formulas; sometimes we write these as A (x1, . .., x"), etc., to call attention
 to certain variables. If a formula is given as A (x), we define A (y) as follows:
 First, if A (x) contains any part (y)B(y) containing x free, replace the variable
 y throughout that part by z, where z is the alphabetically earliest variable
 not occurring in A (x). Second, after the first replacements have been made,
 replace all free occurrences of x by y. (On this definition, (x)A (x) v A (y)
 always holds, without restrictions on substitution.) Analogous definitions

 are adopted when there is more than one variable involved. We define

 A v B as ~Q A -AAB), A D B as -(A A/\ B), OA as ~L?A, and
 (3x)A (x) as -(x) A(x). For our formalization of S5 with quantifiers and
 equality we first take any formalization adequate for the classical first-
 order predicate calculus with equality, say that of Rosser [2] (pp. 101 and
 163-4). We supplement this system by the following axiom schemes and
 rules of inference :

 Al: MA DA

 A2: --iA v n4IA

 A3: D(ADB).D.DA:D-B
 RI. If FA and FA DB, FB.

 R2. If FA, FDA.

 Received August 25, 1958.

 1 My thanks to the referee and to Professor H. B. Curry for their helpful comments
 on this paper and their careful reading of it. I must express an added debt of gratitude
 to Curry; without his constant encouragement of my research, publication of these
 results might have been delayed for years.

 2 See Prior [6] and the references given there.

 I
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 2 SAUL A. KRIPKE

 We call the resulting system S5*=; if equality is omitted, we call it S5*,

 and if quantifiers and equality are dropped, we call it S5.

 Given a non-empty domain D and a formula A, we define a complete

 assignment for A in D as a /unction which to every free individual variable

 of A assigns an element of D, to every propositional variable of A assigns

 either T or F. and to every n-adic predicate variable of A assigns a set
 of ordered n-tuples of members of D. We define a model of A in D as an

 ordered pair (G, K), where G is a complete assignment for A in D and K
 is a set of complete assignments for A in D such that G E K and such that

 every member of K agrees with G in its assignments for free individual

 variables of A (but not necessarily in its assignments for propositional

 and predicate variables of A). Let H be a member of K and B a sub-

 formula of A; we define H as assigning either T or F to B inductively,

 thus: If B is an n-adic prime formula P(xl, . . ., x"), and if V is the set of
 ordered n-tuples H assigns to P, and we assign elements of D ocl, . . , an

 to xl, .. ., xn (the assignment must be consistent with H, but if some x.
 is bound in A and hence not assigned an element, we make an arbitrary

 assignment), then B is assigned T if (oa., . .., OIa) E Vp; otherwise, B is
 assigned F. Propositional variables are already, by hypothesis, assigned T

 or F by H. If B has the form x = y, it is assigned T if x and y are assigned

 the same element of D; otherwise it is assigned F. JOB is assigned T(F)
 if and only if B is assigned F(T). B A C is assigned T if B and C are both

 assigned T; otherwise it is assigned F. (x)B(x) is assigned T if B(x) is assigned

 T for every assignment of an element of D to x; otherwise, it is assigned F.

 LiB is assigned T if every member of K assigns T to B (subject to the
 stipulation that all members of K agree in their assignments to all free

 individual variables of B); otherwise, it is assigned F.

 A is said to be valid in a model (G, K) of A in D if and only if A is assigned
 T by G. A is said to be valid in D if and only if A is valid in every model
 of A in D. A is said to be satisfiable in D if and only if there is some model

 of A in D in which A is valid. A is said to be universally valid if and only

 if A is valid in every non-empty domain.

 The basis of the informal analysis which motivated these definitions is

 that a proposition is necessary if and only if it is true in all "possible worlds."

 (It is not necessary for our present purposes to analyze the concept of a

 "possible world" any further.) Now let A be a formula with P1, ..., Pm

 as its propositional and predicate variables and xi,..., xn as its free
 individual variables. If we interpret every free individual variable as de-

 noting a particular object and every propositional or predicate variable as

 denoting a particular proposition or predicate, then A becomes a "prop-
 osition" in the ordinary sense of the word. From an extensional point of

 view, an adequate semantic counterpart to this interpretation is given by

 the concept of a complete assignment for A in a domain D. In modal logic,
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 A COMPLETENESS THEOREM IN MODAL LOGIC 3

 however, we wish to know not only about the real world but about other

 conceivable worlds; P may be true in the real world but false in some

 imaginable one, and similarly for P(xl, ..., xn). Thus we are led not to
 a single assignment but to a set K of assignments, all but one of which

 represent worlds which are conceivable but not actual; the assignment

 representing the actual world is singled out as G, and the pair (G, K) is

 said to form a model of A. Furthermore, since xl, ... , xn represent in-
 dividual objects, which remain the same in all worlds, we assume that all

 members of K agree in their assignments to individual variables. Clearly

 all the rules for assigning T or F to formulas now become valid when they

 are interpreted as representing an evaluation of the proposition correspond-

 ing to the formula as true or false in a given "world," whether real or

 possible. In particular, a proposition EB is evaluated as true when and only

 when B holds in all conceivable worlds. A proposition can be said to be

 true if it holds in the actual world; this idea leads to our definition of

 validity in a model. In trying to construct a definition of universal logical

 validity, it seems plausible to assume not only that the universe of dis-

 course may contain an arbitrary number of elements and that predicates

 may be assigned any given interpretations in the actual world, but also

 that any combination of possible worlds may be associated with the real

 world with respect to some group of predicates. In other words, it is plausible

 to assume that no further restrictions need be placed on D, G, and K,
 except the standard one that D be non-empty. This assumption leads

 directly to our definition of universal validity.

 It is noteworthy that the theorems of this paper can be formalized in a

 metalanguage (such as Zermelo set theory) which is "extensional," both in

 the sense of possessing set-theoretic axioms of extensionality and in the

 sense of postulating no sentential connectives other than the truth-functions.

 Thus it is seen that at least a certain non-trivial portion of the semantics

 of modality is available to an extensionalist logician.

 We shall now turn to our completeness proof. We base it on the concept

 of semantic tableaux introduced by Beth [4]. The present treatment is
 self-contained, although acquaintance with Beth's paper may facilitate
 comprehension.

 We say that a formula B is semantically entailed by formulas A, A2,
 An if and only if A1AA2A... A,. .B is universally valid; if n==O, this
 concept coincides with that of the universal validity of B.

 A semantic tableau is a device for testing whether or not a given formula

 is semantically entailed by other given formulas. Clearly a necessary and

 sufficient condition that A1, ... , An should not entail B is that there
 should exist a model in which A1, ..., An are valid and B is not. We
 represent this situation by putting A1, ... , An in the left column of a

 tableau and B in the right column. Various other tableaux will be introduced
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 4 SAUL A. KRIPKE

 later as a result of the rule Yr given below; these tableaux are called

 auxiliary tableaux, while the tableau initially introduced is the main tab-
 leau. Thus, in general, we are dealing not with a single tableau, but with

 a set of tableaux from which one member has been singled out as the

 main tableau. Indeed, as will be seen from rule Ar below, a construction

 may introduce a system of such sets, each set of the system being called an

 "alternative set." Given, then, a main tableau with A,, ..., A. in the
 left column and B in the right column, we continue our construction by

 the following rules (which apply to any tableau of the set, main or auxiliary) :3
 Nl. If M-,A appears in the left column of a tableau, put A in the right

 column of that tableau.

 Nr. If P-'A appears in the right column of a tableau, put A in the left
 column of the tableau.

 Al. If A AB appears in the left column of a tableau, put both A and B
 in the left column of the tableau.

 Ar. If A AB appears in the right column of a tableau, there are two

 alternatives - either put A in the right column or put B in the right

 column. In this case we say that the tableau splits into two alternative

 tableaux. If the splitting tableau is the main tableau of a set of tableaux,

 the resulting alternative tableaux are main tableaux of two alternative sets;

 otherwise they are auxiliary tableaux of alternative sets.

 II. If (x)A(x) appears in the left column of a tableau, and a is a variable

 which occurs free in either column of any tableau of the set, then put A (a) in
 the left column of the same tableau which contains (x)A (x) in its left column.

 Hr. If (x)A (x) appears in the right column of a tableau, then we intro-

 duce a variable a which has not yet appeared in any tableau of the set,

 and we put A (a) in the right column of the same tableau containing (x)A (x)
 on the right.

 II. If a_ b (for some variables a and b) appears in the left column of a

 tableau, then in both columns of every tableau of the set we replace every
 formula A (a, b) by A(b, b).

 Ir. No rule.

 Yl. If DIA appears in the left column of a tableau, then we put A in

 the left column of every tableau of the set.
 Yr. If DIA appears in the right column of a tableau, then we introduce

 a new auxiliary tableau which is started out by putting A in its right
 column.

 In addition to these rules for construction of semantic tableaux, we add
 that if no free variable appears and none is introduced under fir, then we
 introduce a free variable so that Ill can be applicable.

 3 The names of these rules were suggested by those for the inferential rules of
 Curry [8].
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 A COMPLETENESS THEOREM IN MODAL LOGIC 5

 A tableau is said to be closed if and only if either a formula occurs in

 both of its columns or a= a, for some variable a, occurs in its right column.

 A set of tableaux is closed when and only when at least one of its members

 (either main or auxiliary) is closed. Because of Ar, a construction beginning

 with A,, ... , An in a left column and B in a right column may split into
 alternative sets; in this case we say that the construction is closed if and

 only if all its alternative sets are closed.

 THEOREM 1. B is semantically entailed by A1, .l. , An if and only
 if the construction beginning with A1, ... , An in a left column and B

 in a right column is closed.

 PROOF. The theorem follows from the following two lemmas.

 LEMMA 1. If a construction beginning with A1, . . ., An on the left

 and B on the right is closed, then B is semantically entailed by A1, . . , A,.

 PROOF. Assume for reduction ad absurdum that B is not semantically
 entailed by A1, ... , A". Then there is a non-empty domain D and model

 (G,K) of AAA2A... A,.D.B (or of B, ifn nO) in D such that AIA
 A2A ... A,. D .B (or B) is not valid in (G, K). We shall show that every
 statement on the left (right) side of the main tableau of the construction

 beginning with A,, ... , An on the left and B on the right is assigned T(F)
 by G. Further, we shall show that every auxiliary tableau corresponds in
 the same manner to some member of K.

 Since A1A ... A,, , .B (or B) is not valid in (G, K), it is assigned F
 by G. By the valuation rules for "A" and "a and the definition of

 "v", A1, ... , An are all assigned T and B is assigned F by G. By the
 valuation rules for i, if ARC is assigned T., C must be assigned F; this
 fact validates Ni. Similarly we can validate Nr and Al. If C A D is assigned

 F., either C or D must be assigned F; Ar thus correctly instructs us to con-
 sider these two alternative possibilities. If (x)A (x) is assigned T, every
 element of D must be assigned T; hence Ill is valid. If (x)A (x) is assigned F,

 then there is a member a of D such that A (a) is assigned F; hence fIr

 is valid. If a= b is assigned T, then a and b are assigned the same member
 of D; hence the substitution described in II is valid. If LA is assigned T,
 then every member of K assigns T to A; hence Yl is valid. If LA is assigned

 F., there exists a member of K which assigns F to A; hence Yr is justified.
 Finally, our stipulation that at least one free variable should be introduced

 corresponds to the restriction that D be non-empty.

 Since the construction is closed, every alternative set contains a tableau
 which either has a formula irl both columns or has a=.a on the right. This,
 however, means that some member of K must either assign both T and F
 to some formula or must assign F to a a. Since our valuation rules make

 both of these alternatives impossible, it follows that the domain D and
 model (G, K) cannot exist. Q.E.D.
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 6 SAUL A. KRIPKE

 LEMMA 2. If the construction beginning with Al, ... , A. on the left and
 B on the right is not closed, then B is not semantically entailed by A1, . .. , A n.

 PROOF. Since the construction is not closed, there exists a set of tab-

 leaux, one of the construction's alternative sets, which is not closed.

 We shall choose such a set and ignore all other alternative sets. Let D be, the
 set of all free variables occurring in our set of tableaux (and not eliminated

 by an application of Ii). For every tableau in the set, we define an assign-
 ment for A1 A ... An. D .B as follows: Every free variable which is not

 eliminated by II, is assigned to itself; a free variable eliminated by Ii is

 assigned the variable which replaces it. A propositional variable is assigned

 T if it appears on the left in the tableau; otherwise it is assigned F. A pred-

 icate variable Pn is assigned the set of all ordered n-tuples (xl, ..., x"*)
 such that Pn(x1, . .. , xn) appears on the left of the tableau. We now have
 a set K of complete assignments corresponding to our set of tableaux;

 if G is the assignment corresponding to the main tableau of the set, (G, K)

 is a model of A1 A... An. D B in D.
 We now show by induction on the number of symbols of C that any

 formula C occurring on the left (right) side of a tableau is assigned T(F)

 by the corresponding assignment function. Clearly this is true for prime

 formulas (including propositional variables) occurring on the left. If they
 occur on the right, then since the tableau is not closed, they cannot occur
 on the left; hence they are assigned F. If an equality formula a=b occurs

 on the left, then by II, it is replaced by b b; this latter formula must be

 assigned T. If a=b occurs on the right, since the tableau is not closed,
 a and b must be distinct variables which remain distinct after all replace-
 ments by II. Hence, by the given assignment for free variables, a and b
 are assigned to distinct objects, and a=b is thus assigned F. If -AC appears
 on the left, by Nl C appears on the right; hence, by the hypothesis of the
 induction, C is assigned F. By our valuation rules, -AC is assigned T.
 Similarly we can treat the cases where AR.C appears on the right or C1 A C2

 or (x)C(x) appears on either side. If EDC appears on the left, by Yl C appears
 in the left column of every tableau of the set; hence, by the hypothesis

 of the induction, C is assigned T by every member of K. Hence, by our

 valuation rules, EC is assigned T. Finally, if FIC occurs on the right,
 by Yr C appears on the right in some tableau of the set; hence, by the

 hypothesis of the induction, C is assigned F in some member of K. Hence,

 by our valuation rules, nC is assigned F.

 Since A,, ... , An occur on the left column of the main tableau, they
 are assigned T by G; similarly G assigns F to B. By our valuation rules,

 G assigns F to A1A . . .. An. D .B; hence A IA ... An. D .B is not valid in
 (G, K). Therefore B is not semantically entailed by AI, ... , An. Q.E.D.

 THEOREM 2. If a formula is satisfiable in a non-empty domain, it is
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 A COMPLETENESS THEOREM IN MODAL LOGIC 7

 valid in a model (G, K) in a domain D, where D and K are both either
 finite or denumerable. If a formula is valid in every finite (non-empty) or

 denumerable domain, it is universally valid.

 PROOF. The second sentence of the theorem follows easily from the
 first. If a formula B is satisfiable in some non-empty domain, J-OB is not

 universally valid; hence, by Theorem 1, the construction started by putting

 PUB in a right column is not closed. Hence the proof of Lemma 2 constructs

 a particular domain D and model (G, K) in which J-OB is not valid, i.e., in
 which B is valid. Clearly, however, D and K are both finite or denumerable,

 as can be seen from the rules by which tableaux are constructed.

 THEOREM 3. If a formula not containing the sign of equality is satisfiable

 in some non-empty domain, it is valid in a model (G, K) in a domain D,
 where K is finite or denumerable and D is denumerable. Further, if it is

 valid in every denumerable domain, it is universally valid.

 PROOF. This theorem follows easily from Theorem 2 and the following

 lemma:

 LEMMA 3. If a formula A not containing the sipn of equality is valid
 in a model (G, K) in a non-empty domain D, and D is a subset of D', then
 A is valid in a model (G', K') in D', where K and K' are equinumerous.

 PROOF. Since D is non-empty, let a be an element of D. For every

 assignment H e K we define H', an assignment for A in D', thus. For all

 free individual variables and propositional variables, H' makes theq same
 assignments as H. If H assigns to a predicate variable PI a set S of ordered

 n-tuples of elements of D, H' assigns to pn a set S' containing all n-tuples

 of S, plus any n-tuple obtained by replacing a in some of its occurrences
 by any elements contained in D' but not in D. K' is then obtained from K

 by replacing every fl e K by H'. It is now easy to prove that A is valid
 in (G', K').

 THEOREM 4. If, in Theorems 2 and 3, the formula in question does not

 contain " L", then K can be stipulated to be the unit set of G.

 PROOF. This can easily be proved by analysis of the construction of
 K in Theorems 2 and 3.

 Clearly Theorems 2 and 3 are the modal analogues of the Lbwenheim-

 Skolem Theorem. Theorem 4 states (roughly) that if modality is not pres-

 ent, the usual form of the Lbwenheim-Skolem Theorem can be obtained.
 Furthermore, we can extend our versions of the Ldwenheim-Skolem Theorem

 to joint satisfiability of infinitely many formulas, if we allow a construction
 to start by putting infinitely many formulas in either or both columns.

 Although, as Beth has shown in [4], a tableau construction may proceed
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 8 SAUL A. KRIPKE

 indefinitely, and thus it may conceivably introduce infinitely many varia-

 bles, formulas, and tableaux, it is equally clear that if we start a con-

 struction with finitely many formulas in both columns of a main tableau,

 after any finite number of applications of the rules only finitely many formu-

 las, variables, and tableaux are introduced. We call the stage in which

 A1, . .., An are put in the left column and B in the right column the

 initial stage of the construction; the stage at which the mth rule has been

 applied is the m+ Ith stage.

 We define the characteristic formula of a given tableau at a particular

 stage as A1A ... AmA,.BA... A where A1, ... , Am (B1, ... , Bn)
 are the formulas found on the left (right) side of the tableau at this stage.

 We then define the characteristic formula of any one of the alternative

 sets at a given stage as (3al)(3a2)... (3a.) (A A OB, A ... OB,), where A
 is the characteristic formula of the main tableau of the set, B1, . . ., B. are
 the characteristic formulas of the auxiliary tableaux of the set, and

 al,..., a., are the free variables of A AOB1A... OB. Finally we define
 the characteristic formula of a stage as D, v ... Do, where D1, D.. are
 the characteristic formulas of the alternative sets of the stage. Clearly the

 characteristic formula of the initial stage is (3al)(3a2) ... (3a,)(A1 A . .
 AJ1A -.B) where A1, ... , A, are the formulas put on the left and B is
 the formula put on the right; if y== 0, the characteristic formula is simply

 (3aj) ... (3ap)'-B.

 LEMMA 4. If A is the characteristic formula of the initial stage of a

 construction, and B is the characteristic formula of any stage of the con-

 struction, then FA D B in S5*=.

 PROOF. We shall show that the characteristic formula of the nth stage

 of a construction implies the characteristic formula of the n + 1 th stage.
 From this fact our lemma follows easily, using the transitivity of impli-

 cation. Let A, then, be the characteristic formula of a stage and B be the

 characteristic formula of the following stage; we are to show that FA D B

 in S5*=. In general A will be an alternation A1 v ... Am, representing
 several alternative sets. The rule by which B is obtained from A will affect

 only one of these alternative sets; i.e., it will change AX (1 _ x ? m) to

 AX and leave the other components unchanged. Since IAn, D A.,,: D: A1 v
 ... AV ... Am D)A1 V ... AX v . . . Am is valid in S5, it is sufficient
 to show that IA, D AX,, and thus ignore the other alternative sets. If A Z
 is (3a1) ... (3a1,)B and Ax is (3al).. . (3aj)B', clearly it suffices to show
 FB D B' in order to show IAX :D AX ,. Since every rule except II, Yl, and Yr
 applies to only one tableau of a set, it is sufficient in all cases but these

 three to consider the characteristic formula of this tableau alone and
 ignore the rest of the set. Let the rule being considered transform a tableau

 with characteristic formula C to one with characteristic formula C'. If the
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 A COMPLETENESS THEOREM IN MODAL LOGIC 9

 tableau is auxiliary we actually are required to prove F0C D <)C', but
 this can come from FC D C' by R2, FI-E(C 2 C'). D .C)C 2 CC', and RI.

 Let C then be D1 A ... D.,, generally the rule will operate on a single-
 formula D, (1 < y 5 p) so as to change D1 A ... D, A ... DP (= C) into
 D1 A ... D, A ... Dp A E (= C'). Clearly in order to prove ID1 A . . . D, A
 .D. D .D1A A ... D, A ... D:AE it is sufficient to prove FD1, D E.
 Bearing these preliminary remarks in mind, we consider the following
 cases:

 Case Ni. This case is justified by O-V.A Q -.A.

 Case Nr, justified by GINA A.

 Case Al, justified by IA A B. D .A A B.

 Case Ar. Let the characteristic formula of the set to which Ar is being

 applied be either (3al)... (3a2,)(CAK(DA --(A AB))) or (3al)... (3aw)
 (C AD A -.(A A B)), where A A B is the formula to which Ar is applied;
 the first formula is applicable if Ar is applied to an auxiliary tableau, the

 second if Ar is applied to a main tableau. Assume the characteristic formula

 to be as in the first case: Then we have FD A,(A A B): D: D A,(A A B) A

 ,A. v .D A -.(A A B) A -.B. Hence we have F0 (D A (A A B)). D .0 (D A
 (A A B) A -A. v. D A -(A A B) A -.B). By a well-known theorem of S5,
 we have F0 (D A (A A B) A -A. v. D A -(A A B) A -,B). D .K (D A (A A
 B)A .A) vo(DA -.(AAB)A A .B); hence we have FI(DA -(AAB))
 .D.O(DA-.(AAB)AA)Vo(DA,(AAB)AB). From this we get
 FC A O(D A (A AB)): D: C. A .O(D A (A A B) A .A) v O(D A -.(A AB) A
 ,-IB); since FC.A. (DA'-(A AB)A ,A) v (DA-,(A AB) A B): D: CA

 O(DA -(AAB) A A).v.CAAO(DA -(A AB)AB), we obtain FCA
 O(DA-(A AB)): D:CAO(DA (A AB) A PA).v.CAO(DA (A ABR ) A
 B). Attaching existential quantifiers, we have the desired result. Simi-

 larly for the second case.

 .Case [1I. Justified by FI(x)A(x) : A(a).
 Case fIr. Let the characteristic formula of the set to which we apply

 Hlr be (3a,) ... (ap,) (D A 0 (E A/ '-(x)A (x))) or (3al) ... (3a2) (D A E A -.(x)
 A (x)). We shall consider the first case alone. Let b be a variable not occurring

 in D, E, or (x)A(x). We have IEA '.(x)A(x). D .(3b)(EA.(x)A(x) A
 ,-.A (b)). From this we obtain F (E A '.(x)A (x)). :D . (3b) (E A -..-(x)A (x) A
 ,-..A(b)). By a theorem of Prior [6], we have in S5*

 -0 (3b) (E A '-.(x)A (x) A -.A (b)). D .(3b)0 (E A i-.(x)A (x) A -.A (b)); from this
 it follows that FI-(EA -.(x)A(x)) D (3b)o(EA -.(x)A(x) A,-.A(b)). From
 this we obtain easily F(3a1)... (3a2,)(D A (EA -.(x) A(x))). D .(3a.)...*
 (3a22)(3b)(D A O(E A (x)A (x) A -A (b))).

 Case II. The characteristic formula of the set is (3a1). ...(3a)...
 (3a,) ... .(3a,) (D A C (E A a.=a a)) or (3a.) . .. (3a.,) . .. (3a,). . .(3a,,)(DAEA
 ax-a,) ; we consider the first case alone. Clearly Po(E A ax,=a() D (a na,)
 By a theorem of Quine [5] p. 80, formula (52), we have Pa. a=, D -(a. a,,)
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 10 SAUL A. KRIPKE

 hence by a theorem of Prior [6], section 3, we have FO(a.=a11) v a=as,,
 and hence FI-(EA a.= a1) O a =a11. From this we obtain easily
 P(3al) ... (3a.) ... (3a.) ... (3a2,)(D AO(E A a,=a)). =)(3a,) ... (3a.) ...
 (3a.) ... (3ap)(a,=a. AD A (E A a,=a11)). Since we have F(3al) ... (3a$) ...
 (3a.,) . . . (3a,) (a,= a, A D A 0 (E A a, a,,)). D .(3a,) . . . (3ar) ... (3a,) ...
 (3a,)E', where E' is the result of replacing a,. by a,, (after making any neces-
 sary changes in the bound variables) in D A 0 (E A a3,=a,,), our result is proved.

 Case Yl. Let the characteristic formula of the set involved be

 (3a,).. .(3a,)(DA (E A LA)) or (3a,).. .(3ap)(D AE A EA); as usual
 we shall discuss the first case. We have F- (E A EA) v A LIA; and since
 in S5 FIC)WA v WA, F0(E A LIA) v WA. Further we have F -LA: v
 C. :).A A C; this justifies putting C in the left column of any main tableau.

 Similarly F WA. D .TIC D (C A A) justifies putting A in the left column
 of an auxiliary tableau.

 Case Yr. Let the characteristic formula of the set to which Yr is applied

 be (3a,) ... (3a,)(DA0(EA -/\A)) or (3a,) . .. (3a2,)(DAEA ---E /A); as
 usual, we consider the first case. We have Fk (E A --' WA) v OK' WA;

 further since in S5 we have M -ON A MONA, we have FD A 0 (E A
 C--FA). " DA (EA,-,A)Ac A. But K,-O A is the characteristic
 formula of the new tableau introduced by Yr; hence our result follows,

 attaching the existential quantifiers. Q.E.D.

 THEOREM 5. If A is universally valid, then FA in S5*=.

 PROOF. Since A is universally valid, by Theorem I the tableau con-

 struction beginning with A in a right column is closed. Let B be the char-

 acteristic formula of the earliest stage at which the closure is provable

 (i.e., the earliest stage at which every alternative set contains a tableau
 with either a formula in both columns or a formula a a on the right).

 Then by Lemma 4, F(3a,) ... (3a,) -,A. . B; we shall prove IB, from
 which FI--.(3a,). . (3ap,) -,A, and hence ultimately FA, follows easily. In
 general B will be of the form C1 v . . . C, where the C2,'s represent alterna-
 tive sets; in order to prove I--UB it is sufficient to prove IC3, for every x,

 1 < x < n. Again C3, is of the form Do AOD, A ... ODm; since the set is
 closed, there exists a tableau of the set, represented by D1,(0 ? y S; m),
 which is closed. Since, using R2, ID1 implies FOODS it is clearly suffi-
 cient to prove ID1 in order to obtain IC2,. By the definitions of closure
 and characteristic formula, since the tableau corresponding to D1, is closed,
 DR must contain either two conjunction terms E and HE or a conjunction
 term -m'a a. Either case suffices to prove -D1. Q.E.D.

 Theorem 5 is our completeness theorem for the system S5*=; if equality

 (equality and quantification) is (are) dropped, the proofs of Lemma 4 and

 Theorem 5 still hold for S5* (S5). Combining Theorems 2, 3, and 5, we

 obtain the following corollaries:
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 A COMPLETENESS THEOREM IN MODAL LOGIC 11

 COROLLARY 1. If a formula A of S5*= is valid in every finite (non-

 empty) or denumerable domain, then FA in S5*=.

 COROLLARY 2. If a formula A of S5* is valid in every denumerable

 domain (or by isomorphism of equinumerous domains, in a single denumera-

 ble domain), then iA in S5*.

 We shall now prove a consistency theorem for S5,*=, the converse of

 our Theorem 5.

 THEOREM 6. If FA in S5*=, A is universally valid.

 PROOF. Construction of appropriate semantic tableaux will verify that

 every axiom of S5*= is universally valid. The valuation rules for "v"

 suffice to show that if A and A D B are universally valid, so is B; this

 validates RI. If A is universally valid, by Theorem 1 a tableau construction

 beginning with A on the right eventually closes. If we begin a construction

 with WA on the right, Yr instructs us to put A on the right in a new

 tableau. Since this construction closes, so does the construction beginning

 with WA on the right; hence, by Theorem 1, WA is universally valid.
 This validates R2 for universal validity.

 THEOREM 7. FA in S5*= if and only if A is universally valid.

 For the propositional calculus, it is customary to determine universal

 validity by means of truth tables. Although the semantic tableaux already

 give a convenient decision procedure for S5, it will be instructive to con-

 struct analogous tfuth tables for 55. An ordinary classical truth table is
 a set of possible valuations of the propositional variables; each set of

 possible valuations for each propositional variable is determined by a row

 of the table. We then evaluate a formula using the usual rules. For 55
 truth tables we adopt a similar definition, except that in any table some

 (but not all) rows may be omitted. Thus a formula has many truth tables,
 depending on how many rows are omitted. We evaluate " A" and "'"
 according to the usual methods. In any truth table WA is assigned T in
 every row if A is assigned T in every row; otherwise WA is assigned F
 in every row. A formula B is a tautology of S5 if and only if it is assigned T
 in every row of each of its tables. Clearly a truth table for B corresponds

 to a set K of assignments for B, since by hypothesis B contains only propo-
 sitional variables to be assigned T or F. If we pick out a particular row of a

 table as its* designated row and let the corresponding assignment be G,
 we obtain a model (G, K) for B. (In the propositional calculus, reference to
 a domain D is unnecessary.) Using these observations it is easy to prove

 that for formulas of S5 our notion of tautology coincides with our notion
 of universal validity.

 THEOREM 8. -A in S5 if and only if A is a tautology of S5.
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 12 SAUL A. KRIPKE

 PROOF. Show the equivalence of tautologyhood and universal validity,

 and use Theorem 7 restricted to S5.

 Alternative proof. The proof just given, when written in detail, is com-

 pletely finitary and rigorous. Nevertheless it may be argued that we should
 give our proof a more familiar form, say analogous to the treatments of

 ordinary tautology by Kalmar's method in Rosser [2] (pp. 70-74) and
 Kleene [1] (Sections 29, 30). We shall outline such a proof, although details
 will not be given. We prove two lemmas. First define the characteristic

 formula of a row as P1 A ... Pm/ A -QAQl . A where the Pa's(Q,'s)
 are the propositional variables assigned T (F) by the row. The characteristic

 formula of a table with designated row is AO A OA, A ... , A OB A
 ... ^1Ba,. where AO is the characteristic formula of the designated row
 of the table, A., ... , A., are the characteristic formulas of the other rows
 of the table, and B1, ..., B. are the characteristic formulas of the rows
 omitted from the table. Let C be the characteristic formula of a table with

 designated row and let D be the formula evaluated by the table. The first

 lemma is that if the designated row assigns T(F) to D, FC v D (FC v AD).
 (In particular if D is a tautology, FC v D for every possible C.) This lemma

 can be proved by induction on the number of symbols in D. The second

 lemma is that for any D, the alternation of the characteristic formulas
 of all possible tables with designated rows for D is a theorem of S5. From
 these two lemmas the completeness part of our theorem follows easily.
 The consistency part is proved by observing that all axioms of S5 are
 tautologies and that RI and R2 yield only tautologies when applied to
 tautologies.4

 Thus far, we have not permitted quantification on propositional variables.
 We now define a system S5 with propositional quantifiers, containing
 propositional quantifiers and the following axiom schemes (besides those of

 S5):

 (4) (P)A (P) v A (Q), subject to the usual restrictions on substitution.

 (5) (P) (A (P) d) B (P)). =) .(P) A(P) D) (P) B(P).
 (6) A v (P)A, if P is not free in A.

 (7) (3P1). . -(3Pn)A, where A is the characteristic formula of an S5
 truth table with designated row (as defined in Theorem 8), and P1, . P. ,
 are its free propositional variables.

 (7) is a greatly strengthened version of the B9 of [1]; the reader should
 test its plausibility by actual examples. We further agree that any universal
 propositional quantification of an axiom is an axiom. The rules of inference
 are RI and R2.

 4 In earlier work I carried out this alternative proof in detail, before acquaintance

 with Beth's paper led me to generalize the truth tables to semantic tableaux and a
 completeness theorem.
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 A COMPLETENESS THEOREM IN MODAL LOGIC 13

 THEOREM 9. Let A be a formula of S5 unprovable in S5 and let

 PI, .Ac. , Pa be its free propositional variables. Then if (P1) ... (P.) A is
 added to S5 with propositional quantifiers, the resulting system is in-

 consistent.

 PROOF. Since A is not provable in S5, by Theorem 8 some truth table

 contains a row in which A is assigned F. Let B be the characteristic formula

 of the table, with some F-row of A as the designated row. By the first

 lemma in the alternative proof of Theorem 8 (or by Theorem 8 itself),

 -B v -A in S5, Then in S5 with propositional quantifiers, F(P1, ... , PR)
 (B v ,-A), and hence F(3P,)... (3Pn)B O (3PI)... (3P>)-A. Since
 (3PI)... (3Pn)B is an instance of axiom scheme (7), we have F(3P,)...
 (3Pn),A contradicting (P,) ... (Pn)A.

 Theorem 9 is a completeness result for S5 analogous to Corollary 2,

 p. 134 of Kleene [7].5

 Theorem 9 can be reformulated as stating that if a formula A of S5

 with propositional quantifiers is unprovable in that system, then adding

 the closure of A renders the system inconsistent, as long as A does not

 itself contain propositional quantifiers. [(Added December 19, 1958) The
 italicized restriction can be removed by extending the tableau constuction

 to formulas with propositional quantifiers. In. this way we could obtain a

 completeness theorem for S5 with propositional quantifiers. The details
 are not given here.]

 The completeness theorem given in the present paper is based on the

 system S5. It is well known that many alternative modal systems exist;
 five distinct systems are proposed in [1] alone. Further, if modal logic is

 extended to admit quantification and identity, there are other contro-

 versial laws such as (x) ELA(x) v El(x)A(x) and (a, b) (a =b D ja ==b).
 Some of these systems, alternative to S5*=, lead to alternative notions of

 completeness; and any comparison of them for "acceptability" can be

 based on an examination of these alternative semantical notions. The

 details of such considerations will appear in a sequel to the present paper.

 BIBLIOGRAPHY

 [1] C. I. LEWIS and C. H. LANGFORD, Symbolic logic, Century Company, 1932.

 5 An alternative formulation of Theorem 9, avoiding the machinery of propositional

 quantifiers, can be obtained in S5, with a postulated substitution rule for propositional

 variables. In such a system we let all formulas of the form (7), with the existential

 quantifiers replaced by a single negation sign, be postulated as directly refutable

 (see [3]). Then the resulting system is complete, in the sense that every formula is

 either provable or refutable; hence if we add an unprovable formula to the system,

 we obtain inconsistency in the sense of [3].

This content downloaded from 146.96.38.20 on Thu, 14 Mar 2019 13:28:49 UTC
All use subject to https://about.jstor.org/terms



 14 SAUL A. KRIPKE

 [2] J. B. ROSSER, Logic for mathematicians, McGraw-Hill, 1953.
 [3] RUDOLF CARNAP, Introduction to semantics, Harvard University Press, 1942.
 [4] E. W. BETH, Semantic entailment and formal derivability, Mededelingen der

 Koninklijke Nederlandse Akademie van Wetenschappen, Afd Letterkunde,
 Nieuwe Reeks, Deel 18, no. 13, pp. 309-342 (1955).

 [5] W. V. QUINE, Three grades of modal involvement, Proceedings of the XIth
 International Congress of Philosophy, Vol. XIV, pp. 65-81.

 [6] A. N. PRIOR, Modality and quantification in S5, this JOURNAL, Vol. 21 (1956),

 pp. 60-62.
 [7] S. C. KLEENE, Introduction to metamathematics, Van Nostrand, 1952.

 [8] H. B. CURRY, A theory of formal deducibility, Notre Dame Mathematical
 Lectures, no. 6, 1950.

This content downloaded from 146.96.38.20 on Thu, 14 Mar 2019 13:28:49 UTC
All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 24, No. 1, Mar., 1959
	Front Matter
	A Completeness Theorem in Modal Logic [pp.  1 - 14]
	A Counterexample to a Conjecture of Scott and Suppes [pp.  15 - 16]
	The Problem of Simplifying Logical Expressions [pp.  17 - 19]
	On Intermediate Propositional Logics [pp.  20 - 36]
	Constructive Definition of Certain Analytic Sets of Numbers [pp.  37 - 49]
	Reviews
	untitled [pp.  50 - 51]
	untitled [pp.  51 - 52]
	untitled [p.  52]
	untitled [pp.  52 - 53]
	untitled [p.  53]
	untitled [p.  53]
	untitled [pp.  53 - 54]
	untitled [p.  54]
	untitled [pp.  55 - 57]
	untitled [p.  57]
	untitled [pp.  57 - 58]
	untitled [p.  58]
	untitled [p.  58]
	untitled [pp.  58 - 59]
	untitled [p.  59]
	untitled [pp.  59 - 60]
	untitled [pp.  60 - 61]
	untitled [p.  61]
	untitled [p.  61]
	untitled [p.  62]
	untitled [pp.  62 - 64]
	untitled [p.  64]
	untitled [pp.  64 - 65]
	untitled [p.  65]
	untitled [pp.  65 - 66]
	untitled [p.  66]
	untitled [p.  66]
	untitled [pp.  66 - 67]
	untitled [p.  67]
	untitled [p.  67]
	untitled [pp.  67 - 68]
	untitled [pp.  68 - 69]
	untitled [p.  69]
	untitled [p.  69]
	untitled [p.  69]
	untitled [p.  70]
	untitled [p.  70]
	untitled [pp.  70 - 71]
	untitled [p.  71]
	untitled [pp.  71 - 73]
	untitled [p.  73]
	untitled [p.  73]
	untitled [pp.  73 - 74]
	untitled [p.  74]
	untitled [p.  74]
	untitled [p.  74]
	untitled [p.  74]
	untitled [pp.  74 - 75]
	untitled [pp.  75 - 76]
	untitled [p.  76]
	untitled [pp.  76 - 77]
	untitled [pp.  77 - 78]
	untitled [p.  78]
	untitled [p.  78]
	untitled [pp.  78 - 79]
	untitled [pp.  79 - 80]
	untitled [pp.  80 - 81]
	untitled [p.  81]
	untitled [pp.  81 - 83]
	untitled [pp.  83 - 84]
	untitled [p.  85]
	untitled [pp.  85 - 86]
	untitled [p.  86]
	untitled [pp.  86 - 87]
	untitled [p.  87]
	untitled [p.  87]
	untitled [pp.  87 - 88]
	untitled [p.  88]
	untitled [pp.  88 - 89]
	untitled [pp.  89 - 91]
	untitled [p.  91]
	untitled [pp.  91 - 92]
	untitled [pp.  92 - 93]
	Further Citations [pp.  93 - 96]

	Back Matter



