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2008 WINTER MEETING

OF THE ASSOCIATION FOR SYMBOLIC LOGIC

The Marriott Hotel
Philadelphia, Pennsylvania
December 27–30, 2008

A meeting of the Association of Symbolic Logic was held December 27–30, 2008, at the
Marriott Hotel, in conjunction with the annual meeting of the Eastern Division of the
American Philosophical Association. The Program Committee consisted of William Ewald
(Chair), Juliet Floyd, and Michael Hallett. The ASL hosted a reception on the evening of
December 28th.
The program included two symposia and a special session with an invited talk by Saul

Kripke:

Symposium on Historical Ideals of Rigor in Mathematics
Janet Folina (Macalaster College)
Douglas Jesseph (University of South Florida)
Dirk Schlimm (McGill University)

Symposium on Diagrammatic Reasoning in Mathematics
Emily Grosholz (Pennsylvania State University)
Kenneth Manders (University of Pittsburgh)
Sun-Joo Shin (Yale University)

Special Session: “The Collapse of the Hilbert Program”
Saul Kripke (CUNY-Graduate Center)

The program also included one session of contributed papers in which three talks were
presented by logicians from the US and abroad.
Abstracts of the invited talks and contributed talks given (in person or by title) bymembers

of the Association for Symbolic Logic follow.

For the Program Committee
William Ewald

Abstract of invited Special Talk

! SAUL A. KRIPKE, The collapse of the Hilbert program: why a system cannot prove its own
1-consistency.
The CityUniversity of NewYork, Graduate Center, 365 Fifth Avenue, NewYork, NY 10016,
USA.

c⃝ 2009, Association for Symbolic Logic
1079-8986/09/1502-0005/$1.80
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Consider a standard system S of number theory—the usual ‘Peano Arithmetic’ is much
more than sufficient. Hilbert’s program of the 1920’s, had it succeeded, would have proved not
only the mere consistency of S, but that everyΠ02 statement provable in S is true. Gödel’s fa-
mous paper showed that if the program is to be carried out bymeans formalizable inS itself, it
must fail. His argument, however, used something of a deus exmachina as a corollary of an in-
geniously constructed undecidable self-referential statement. Here we show that the program
can be seen more directly to imply its own collapse, even though it convinced a generation of
logicians to believe that it obviously must succeed and that only technical work remained to
finish it. In fact, it contains an implicitly self-referential element in and of itself. Moreover,
a minimalization argument already used in set theory shows the failure of the program.
The basic ideas of the program are two:
(1) Instead of writing (∃x)A(x), write A(εxAx), where (εxAx) denotes any true instance

ofA(x), and is arbitrary if there is none. When all quantifiers have been eliminated in this way,
one needs only the axiom scheme if A(t)⊃A(εxAx), were t is any (ordinary) term. One then
needs only propositional logic. Moreover, when particular values are assigned to each ε term,
it is always decidable whether a given formula is true. (One could have arbitrary primitive
recursive predicates as primitive; one could not bother eliminating bounded quantifiers on
the inside.)
(2) By a systematic process of trial and error (somewhat anticipating Friedberg–Mucnik

priorities, because of the complexities involved when some ε terms involve others), one tries
to find values for the ε terms that would make all the lines of a proof true. Rather than
model-theoretically interpreting the axioms, one need only interpret proofs. (If one believes,
though not ‘officially’, that the axioms are true, it might seem obvious that in particular
proofs appropriate values for the ε terms can be found.)
Notice that the Hilbert program would imply that every provable Σ01 statement must be

true, and hence provable, since it is of the form A(εxAx), and a true numerical value for
the ε term must be available. Provable Π02 statements must also be true, and instances of
the universal quantifier must have provable instantiations. So given any proof p of a Π02
statement (x)(∃y)A(x,y) where A(x,y) is PR (or bounded quantifier, etc.), and number m,
then there is a proof p1 of an instance A(0(m), 0(n)).

(p) (m) ((p proves a Π02 statement <<(x)(∃y)A(x,y)>>)

⊃ (∃p1) (p1 proves an instance <<A(0(m), 0(n))>>)) (∗)

In fact, we can show (assuming theΣ1 correctness of the system) that not only is this general
statement unprovable, but even the instance where we assume p = m must be unprovable:

(p) ((p proves a Π02 statement <<(x)(∃y)A(x,y)>>)

⊃ (∃p1) (p1 proves an instance <<A(0(p), 0(n))>>)) (∗∗)

[Since (∗) is the stronger generalization where we don’t insist that m = p, and is a fortiori
unprovable. (∗) is easily seen to be equivalent to the conditional ‘if S is consistent, it is
1-consistent’. Hence if we show that (∗∗) is unprovable, we have shown that the conditional
in question cannot be provable in S itself.
Now (∗), and hence, (∗∗) is itself a Π02 statement. (So in fact is the statement that values

can be found for the ε terms of every proof. This is the self-referential element implicit in the
program: it makes a sweeping Π02 statement about all provable Π

0
2 statements.) Inspection

of what it means shows that if it had a proof p, there would have to be a proof p1 of an
instance A(0(p), 0(n)), and n would have to be itself a Gödel number of a proof of the very
same instance, which is impossible if we assume that p1 is the shortest such proof.
Analogously to the Gödel case, (∗∗) cannot be provable if S is 1-consistent, but each

numerical instance must be. So (∗∗) must be undecidable if S is 2-consistent.
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Note that we can prove all this about (∗∗) directly, no knowledge of ε terms is required.
A variant argument would use a different statement than (∗) claiming the truth, rather

than the provability of the appropriate Σ1 instance.
Yet another variant would argue for the unprovability of (∗∗) by the simplerminimalization

argument based on the equivalence of (∃w)A with (∃z)(∃w < z)A. I prefer the original
argument as showing conceptually what it is involved, and as applicable even if we abandoned
arithmetization in favor of a direct formulation of syntax.
The original argument is also somewhat analogous to the oldest argument against the proof

of a sort of consistency statement; that one cannot prove in ZF that ZF has an R(α) model
(in fact, as observed later, that it has a transitive model). Though one might think this ought
to be possible, in fact it is not, since there would be no model of smallest ordinal. The present
writer thought of amodel theoretic approach toGödel’s theorem (to be presented elsewhere),
and finally came up with the present argument as a proof-theoretic analog applicable to the
Hilbert program, which purported to replace models by interpreted proofs.

Abstracts of Invited Papers for the invited panel on
Diagrammatic Reasoning in Mathematics

! EMILYR. GROSHOLZ,Combining abstract and concrete representations in mathematics: a
case study in textbook exposition.
Department of Philosophy, 240 Sparks Building, The Pennsylvania State University, Univer-
sity Park, PA 16802, USA.
E-mail: erg2@psu.edu.
Newmathematicalmethods often propose amore abstractwayof representing problematic

items to be used alongside more familiar and concrete ways of representing them. One well-
known example is Descartes’ use of the algebra of arithmetic (sporting a perspicuous new
notation thanks to him, Vieta and Fermat) in order to classify and investigate geometric
curves; another is Poincaré’s invention and introduction of the Fundamental Group (first
homotopy group) to classify 2-dimensional smooth manifolds, a central problem for the
nascent domain of topology. In these applications of novel methods we typically find that
the more abstract representation only applies if one of the more concrete representations also
applies. Nancy Cartwright in The Dappled World makes a similar point about reasoning
in physics, and uses the suggestive image of dressing up for an occasion: thus we may say
here that in novel applications of method a more concrete representation must ‘fit out’ the
abstract representation in a given context of use, a given problem-solving situation. In
mathematics textbooks, we often find that diagrammatic representations do the work of
more concretely indicating the item that is being talked about, while algebraic notation does
the work of more abstractly analyzing and exhibiting the item’s ‘conditions of intelligibility’
and thus the problem’s ‘conditions of solvability,’ phrases that I borrow from Leibniz. These
two kinds of representation, juxtaposed and superimposed, are set in rational relation by
natural language, which explains how they are to be understood in tandem. To support my
claim, I will use two late twentieth century textbook expositions of important results. One
immediate consequence of my case studies is that re-writing such expositions in predicate
logic will erase the irreducible and productive heterogeneity among the idioms of the two
kinds of representation and natural language, and thus fail to capture important aspects of
the reasoning.

! KENNETHMANDERS, Geometrical diagram-inference: philosophical and logical opportu-
nities.
Philosophy, University of Pittsburgh, 1001 CL, 4200 Fifth Av., Pittsburgh, PA 15260, USA.
E-mail: mandersk@pitt.edu.


