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The Road to Gödel* 
 

Saul A. Kripke 

 

What does this title mean? Gödel’s incompleteness theorem, as he originally presented it, 

seems to be an extraordinary and tricky magical construction. We can now, with modern 

recursion theory or computability theory,1 reduce the problem to the unsolvability of the halting 

problem, or the theorem that there is a recursively enumerable set that is not recursive 

(computably enumerable set that is not computable) – though that is not the way Gödel presented 

it himself. A friend of mine of the highest distinction in this very field of recursion 

(computability) theory, once said to me in informal conversation that all of us know how the 

original Gödel statement was constructed, but no one really understands what it says. It is just an 

artificial product and has no intuitive content.  

Now, I want to do two things: first, to present the Gödel theorem as almost the inevitable 

result of a historic line of thought. I don’t mean that it did happen that way; I mean that it could 

have, and perhaps should have, but did not happen in that way. Second, I want to show that the 

Gödel statement, the one Gödel proves to be undecidable in the first incompleteness theorem, 

makes a fairly intelligible assertion that can actually be stated. Along the way I will do some 

things that are a little bit more technical, which are, not only as motivation but even as side 

theorems, unknown (as far as I know) even to specialists. They have to be separated out, because 

they involve more technicalities, though I will mention them and, to some extent, use them. I 

should also state at the outset that some of these issues are unnecessary to the main point about 

the interpretation of Gödel’s statement, and can be avoided if one wishes to do so.  

Let’s look first at Gödel’s own presentation, which has struck many readers as tricky and 

magical, by way of contrast with the present version. Gödel first says: 

 

Before going into details, we shall first sketch the main idea of the proof, 

of course without any claim to complete precision. The formulas of a 

formal system (we restrict ourselves here to the system PM) in outward 

appearance are finite sequences of primitive signs (variables, logical 

constants and parentheses or punctuation dots), and it is easy to state with 
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complete precision which sequences of primitive signs are meaningful 

formulas and which are not.2  

 

… it does not matter what objects are chosen as primitive signs, and we 

shall assign natural numbers to this use. Consequently, a formula will be a 

finite sequence of natural numbers, and a proof array a finite sequence of 

finite sequences of natural numbers. (1931:147) 

 

Now, Gödel gives his main construction. A formula with just one variable free, of the type of 

natural numbers, he calls a “class sign”; we can even restrict the notion so that the free variable 

is a particular one, x1. The class signs are thought of as arranged in a series (sequence) and the n-

th is denoted as R(n). Both the concept “class sign” and the ordering relation R are definable in 

Principia Mathematica (PM). Any class sign [a; n] designates the formula obtained by replacing 

the free variable in the class sign a by the sign for the natural number n. The three-term relation 

x = [y; z] is also definable in PM. 

Then he defines a class of natural numbers: 

 

n Î K º [R(n); n] 

 

This means that when we put in a numeral for the number n in place of the free variable in the 

nth class sign, which he calls R(n), what we get is unprovable.3 That itself defines a class, and so 

is denoted by some class sign. Hence, it is expressed by a class sign R(q) for a certain natural 

number q. Then he shows that if we consider the proposition: 

 

[R(q); q] 

 

the result is undecidable, and in a tricky roundabout way can be interpreted as saying of itself 

that it is unprovable. He writes: ‘the analogy of this argument with the Richard antinomy leaps to 

the eye. It is closely related to the ‘Liar’ too’. (1931:149). Pretty clever (if I don’t give the 

details, I suppose you have heard them before) and pretty tricky construction. The result of his 

construction is that in an almost magical way it gives a formula uniquely applying to itself, 
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which can be proved to amount to its own provability. But what is the formula all about? What 

does it say? Gödel says in note 15 that the formula states only in an indirect way of itself that it is 

unprovable. He suggests that this shows the formula doesn’t involve any faulty circularity, 

because only by accident does it turn out that it says of itself that it is unprovable.4 It says that a 

formula obtained in a certain way is unprovable, and calculation shows that to be the original 

formula itself. 

Unorthodoxly, instead of starting with any of the semantic paradoxes,5 I want to start with 

what were ordinarily called “the paradoxes of set theory” in the old days – that is, that the so-

called unrestricted comprehension schema leads to a contradiction.  

The naïve or unrestricted comprehension schema is: 

 

($y)(x)(x Î y º A(x)) 

 

For an arbitrary formula A(x), as long as it does not contain y free, it defines a class of all 

those things where A(x) holds. For those whose intuitions favored the schema, A(x) could contain 

other parameters (z1, … zn), and so the schema would read: (z1, … zn) ($y)(x)(x Î y º A(x, z1, … 

zn)). However, since parameter-free versions already lead to paradox, we shall deal only with the 

version where A(x) contains no parameters. Some of the classic paradoxes have versions that 

would be most obviously formalized using extensionality as well as comprehension. Even these 

can in fact be used to produce versions of the Gödel theorem, but there is no need for excessive 

complications.6 

The contradictory nature of the schema shocked a great deal of the mathematical and logical 

community. Poincaré, whose attitude to both Cantor’s set theory and mathematical logic was 

hostile, said that the Cantorians overreached themselves and ran into contradictions. Having 

earlier held that mathematical logic is sterile, now he exulted that it was no longer sterile; it leads 

to a contradiction (Poincaré 1912: 536-7). Cantor, however, never felt that the contradictory 

nature of the schema had anything to do with his set theory. I tend to believe that Hausdorff felt 

so also.7 But Frege (1902) was certainly shocked. Russell (1967 [1902]), who popularized the 

paradoxes more than anyone else, was also shocked. Even those in the mathematical community 

who were more sympathetic to set theory than Poincaré thought there was a serious problem to 

be solved and that, naively, set theory was most naturally based on the inconsistent schema.8 



 
 

 4 

Russell found the simplest and most famous counter-instance to the schema, where A(x) can 

be a very simple formula, not even containing quantifiers. He showed that the case x Ï x leads to 

a contradiction, because there can’t be any y such that: 

 

(x)(x Î y º x Ï x) 

 

Of course, as a special case of this, if we had such a y, we would derive:  

 

y Î y º y Ï y 

 

This is only one of many consequences that are contradictory. Although Russell is really 

responsible for the recognition of the paradoxical character of other set theoretical paradoxes, 

such as the Burali-Forti paradox (see Moore and Garciadiego 1981), Quine (see 1951: 128-30) 

has found perhaps some of the simplest ones. For example, if A(x) is:  

 

~($z)( x Î z Ù z Î x ) 

 

a contradiction can be obtained too: 

 

($y)(x)[x Î y º~($z)(x Î z Ù z Î x)] 

 

This is the class of all unreciprocated classes. Let a class x be called reciprocated if it is a 

member of a class z which is also a member of x; unreciprocated, otherwise. Let K9 be the class 

of all unreciprocated classes. Then is K itself reciprocated?  Plainly not. For if some z 

reciprocates K   

 

z Î K Ù K Î z 

 

since z Î K, z would have to be unreciprocated (by the definition of K). But it also would be 

reciprocated by K itself, which is a contradiction. So K is unreciprocated. Again by the definition 

of K, this means K Î K. But then 
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K Î K Ù K Î K 

 

i.e. K reciprocates itself, which is a contradiction. So this paradox also shows that the 

unrestricted comprehension axiom schema cannot be satisfied. Like Russell’s paradox, it is far 

simpler than such classical set-theoretic paradoxes as the Burali-Forti paradox. 

To me it has turned out to be of some conceptual interest that someone who was simply told 

that the unrestricted comprehension axiom schema is inconsistent, without needing any particular 

example, could already derive a (non-constructive) version of Gödel’s theorem, proving under 

appropriate hypotheses (including consistency) that there is a true but unprovable universal 

statement, and which, on the assumption of w-inconsistency, is undecidable. We shall prove this 

below. 

Notice that what one has been told is independent of the interpretation of the epsilon relation. 

It is a matter of pure first-order logic that the unrestricted comprehension axiom schema is 

inconsistent. Russell already realized this in his example of the barber who shaves all and only 

those who do not shave themselves – and then the question is whether the barber shaves himself. 

Or, analogously to Quine’s case, one could have the class of all barbers who are never shaved by 

any barber who shaves him also – or something like that. The same contradiction would go 

through, because the interpretation of the epsilon relation is irrelevant.10  

Let us look at this matter in considerable generality. Consider a first-order structure having a 

domain D and some relations R1, R2, … that can have a certain number of places. Let’s say that 

among these relations there is at least one two-place relation R1. It could have, or it could not 

have, designated function letters and constants (whether these are allowed or eliminated11 is not 

important): 

 

<D, R1, R2, …, f, …>. 

 

We have also a corresponding first-order language L with symbols – the variables range over 

the domain D, the relations are all primitive symbols of the language, and so on. Assume for the 

moment that D contains the formulas of its own language L in the domain (I will weaken that 
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assumption in a moment), or at least it contains the so-called Gödelian class signs involving one 

particular free variable: 

 

⌜A(x1)⌝ 

 

(As I said one can normalize this by choosing a particular free variable.) Suppose we have a 

two-place predicate S between elements of the domain D and formulae:  

 

aS ⌜A(x1)⌝ 

  

(Here I am using “a” as an informal variable over elements of D. ⌜A(x1)⌝ also ranges over 

elements of D, although only over particular elements, namely the ‘class signs’.) Try to interpret 

this as: 

 

a sat ⌜A(x1)⌝ 

 

It is an immediate consequence of the inconsistency of the unrestricted comprehension axiom 

that satisfaction by a class sign of the language – satisfaction of an element in a class sign of the 

language L – cannot be what coincides in extension with the two-place relation R1. Nor can it 

even coincide with satisfaction when restricted to the subset D* of class signs in D (though 

allowed to have an arbitrary extension in D otherwise). Satisfaction in this sense cannot be the 

interpretation of R1 (which we are assuming to be a two-place relation), because if it were – and 

even without knowing any particular paradox – it would follow that the unrestricted 

comprehension axiom schema, 

 

($y)(x)(x Î y º A(x)) 

 

holds in the domain in question. Simply take y to be the very formula A(x1) itself.12 This would 

mean that the unrestricted comprehension axiom is satisfied—but it cannot be. You don’t even 

have to know any particular paradox to obtain this conclusion.  
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The unsatisfiability of the unrestricted comprehension axiom schema is enough to draw 

Tarski’s conclusion that a conventional first-order language cannot fully contain its own 

semantics – cannot be semantically closed.13 It cannot contain its own satisfaction predicate, 

even when confined to formulae with one free variable.  

Now, people didn’t think of first-order structures for languages L that contained L itself as a 

part. We could weaken this a little bit by not necessarily assuming it literally contains the 

formulae of its own language L as elements – though because this is only a matter of structure, it 

is hard to say whether this is very important. But suppose one has a coding function, which I will 

suppose to be a one-to-one (though one-to-oneness isn’t really necessary for everything I say) 

mapping of at least class signs into elements of the domain 

 

f: A(x1) ® D* Í D 

 

(so the range is some subset D* – it maps the class signs and maybe more (perhaps the whole 

language L of the structure) onto D* – which is contained in D). As long as the domain is 

infinite, there will be such a function. This is purely a matter of cardinality.14 However, if this is 

a countable language L, as long as D contains a countable subset, there will be plenty of such 

functions. Any one of them could be called a coding function. (See how we are getting towards 

Gödel a little bit?) Then R1 cannot be satisfied under the coding function, but the two-place 

relation  

 

a satisfies f(A(x1)) 

 

can’t be any two-place relation definable in the language L at all – not a primitive one but not a 

defined one either – because then we would be able to obtain the truth of the unrestricted 

comprehension axiom schema. Remember, we don’t need to know any particular paradox for 

this, just that the unrestricted comprehension axiom schema cannot be true. 

So far we have assumed nothing much about D other than infinite cardinality, and it follows 

that either the coding function or satisfaction must be undefinable in the language L.  

Tarski – I am going backwards, because Tarski was plainly inspired by (dependent on) Gödel 

rather than the other way around, but we are doing things in reverse order here – not only proved 
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the conclusion that a first-order language cannot be semantically closed (where it contains either 

its own syntax, so f could be the identity map, or a coding of its syntax (its formulae), so that f 

could be some other map – there always are such maps, due to cardinality considerations), but 

also drew the stronger conclusion that truth in the language was undefinable.15 What premises do 

we need for that? Why should truth be undefinable? Well, satisfaction reduces to truth, given 

certain premises. What does it mean for a to satisfy the formula A(x1)? Or putting it backwards, 

for A(x1) to be true of a? It simply means that if we put in a name of a in place of x1, the resulting 

formula with no free variables 

 

A ⌜a⌝ 

 

is true in L. Now, to reduce satisfaction to truth, or at least to make the reduction possible for an 

appropriate subset D* of D, one including the (codes of) formulae of L (or at least the codes of 

the class signs), we must be able to define a naming relation in L that relates each code of a 

formula to a code of its name in L. As I put it this way, which is close to the way Gödel put it, we 

have to be able to define substitution too. Alternatively, as probably was first observed by Tarski 

and perhaps independently by Quine, we could define everything this way: 

 

($x1)(x1= ⌜a⌝ Ù A(x1) ) 

 

(Here the function of a expressed by ‘ ⌜’ ‘⌝ ’ is thought to be definable in L. In the famous 

Gödelian case, the natural numbers are the (codes of) formulae, and the Gödel numbers of their 

numerals are the codes of their names. An appropriate defining relation is available in the 

language.) This is an alternative way of reducing satisfaction to truth, but it still requires a 

naming relation definable in the language.16 So to reduce satisfaction to truth, we need a function 

g mapping every class name or code of a class name into a name of the code: 

 

g: A(x1) ® ⌜A(x1) ⌝ 

 

We are well along the way now, because if truth is not definable, but provability is, under the 

coding (and this will certainly be true in a rich enough system, like set theory; in fact it is true in 
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first- order arithmetic, which is a little harder), then truth cannot be equal to provability, so they 

must be two different things. Hence, either there is something false but provable, which is very 

bad, or true but unprovable, which is also bad, but not as bad.17 And, of course, Gödel opts for 

the latter case, assuming that if you have an axiomatic system in the language, all the axioms are 

true. The dilemma involved can be regarded as the weakest and most general form of the Gödel-

Tarski result, that is, either a formal system fails to define its own basic syntactic properties, or 

truth fails to coincide with provability. In the standard cases the second proves to be the case, 

and provability is even arithmetically definable. 

Given this latter fact, we can say more, even at this point. In a famous monograph, Tarski, 

Mostowski, and Robinson proposed a theory R that was supposed to be a very weak theory such 

that any recursively axiomatizable theory containing R allowed both Gödel’s and Rosser’s 

constructions to be carried out. Apparently, the real power of the theory came from the two final 

axiom-sets. Only one of these seemed necessary to show that the Gödel theorem held in any 

consistent extension; and this impression was correct for the usual form of the theorem. The last 

axiom-set clearly gives the impression that the authors thought it necessary to show the same 

thing for the Rosser form of the theorem, though plainly it was not needed for Gödel’s original 

form of the theorem. But it turns out that the extra axiom-set was superfluous for the Rosser 

theorem too, since the whole theory R was interpretable in the theory with the last axiom-set 

deleted.18  

Here I would like to introduce another system I simply call “School”. It is simply theory R 

without the last two axiom sets.19 So, it consists simply of the following tables. Assume we have 

0 and a successor symbol as primitive. 0(m) will stand for 0 followed by m successor symbols. 

There are two primitive functions, plus and times. We have as basic axioms: 

 

0(m)  + 0(n)  = 0(m + n) 

 

0(m)  • 0(n)  = 0(m • n) 

 

And finally: 

 

0(m)  ≠ 0(n) , if m ≠ n. 
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The point of the axioms of school is that they guarantee that any truth-function of the atomic 

sentences (i.e. any quantifier-free sentence of the language) is decidable in School, and in fact 

correctly. 

Gödel showed that the provability predicates of the usual axiomatic systems were definable in 

terms of just plus and times. One should not regard this aspect of his work as essential to the 

main morals, both mathematically and philosophically, of his work, though it was certainly 

technically interesting. If other functions, such as exponentiation, or even other things needed to 

define the provability predicate of the formal system, were introduced as primitive, little would 

be essentially changed. And remember that his basic concern was the provability predicate for 

PM, whose definability within the system is much easier.20  

Nevertheless, there is a point I am trying to make here. Consider any first-order system S 

whose axiom-set is definable in terms of plus and times, and which contains School (or really, in 

which School can be interpreted). It follows from any usual formulation of first-order logic that 

provability is also arithmetically definable. Assume S is consistent. Then by our basic result, 

truth in S (in the language of School plus conventional first-order logic over numbers) cannot 

coincide with provability in S. Hence, S either proves some false statement A, or fails to prove 

some true statement. But given that S is consistent, if it proves a false statement A, it fails to 

prove the true statement ¬A.21 So there is a statement that is true but unprovable in S.  

Now, consider a true but unprovable statement A written in prenex form,22 where the number 

of quantifiers n is a minimum for this property. n cannot be zero, since School correctly decides 

every quantifier-free statement. We can also show that A cannot have the form “$x(Ax)” where 

the initial quantifier is existential. By hypothesis the number of quantifiers in prenex form is as 

small as possible, for a true but unprovable statement of S. Yet, if $x(Ax) were true, A(0n) would 

be true for some n. By the minimality property of the statement A as having the smallest number 

of quantifiers in prenex form for a true but unprovable statement, A(0n), being true, must be 

provable. But then $x(Ax) follows by existential generalization, so it is provable after all, 

contrary to our hypothesis.  

Hence, the minimal true but unprovable statement A must be of the form ‘"x(Ax)’. Since A is 

true, each instance A(0n) must be true. So, by the minimality property, each instance A(0n) must 
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be provable. Hence, in Tarski’s terminology, S is w-incomplete. It therefore is undecidable if S is 

w-consistent.  

These are the properties of Gödel’s undecidable statement, obtained by a non-constructive23 

proof. Smullyan has remarked that most mathematicians have heard that Gödel found an 

undecidable statement, but not that he showed that there is a formula Ax each of whose instances 

is provable but not the general statement "x(Ax) (Smullyan 1992: 73). Presumably, he meant that 

the mathematicians in question would find the latter result much more surprising. At least, my 

own personal experience with one mathematician agreed with precisely that. 

Note that in this case the result cannot possibly be improved to give a Rosser form (unlike the 

situation with theory R, even with the superfluous axiom set deleted). This is true because there 

are complete and consistent arithmetically definable axiom systems in the language of 

arithmetic, but it is also true even if recursive axiomatizability is required. Notice that the axioms 

of School hold in the real and in the complex numbers, whose theories are complete and 

decidable. This was not, of course, the “intended” interpretation, but the complete and consistent 

non-recursive systems don’t hold in the “intended” interpretation either. In the usual 

terminology, School, unlike R, is not essentially undecidable, even though it is sufficient for all 

its extensions to satisfy the Gödel theorem. 

Up to now, we have restricted ourselves to mere knowledge that the unrestricted 

comprehension axiom is inconsistent, without knowing any particular paradox. But of course we 

do know particular paradoxes, of which Russell’s paradox is the best known and simplest.  

We have already remarked on the relation between satisfaction and truth, and what is needed 

to get a proof of the undefinability of truth from that of satisfaction. Here, however, let us 

consider the matter more specifically. The Grelling (heterological) paradox was of course a 

version of Russell’s paradox.24 Membership was replaced by satisfaction, just as it was replaced 

in the barber version. In this case, however, we appear to have a related semantic paradox. The 

following is Quine’s exposition of the matter: 

 

To explain this paradox requires first a definition of the autological, or 

self-descriptive, adjective. The adjective “short” is short; the adjective 

“English” is English; the adjective “adjectival” is adjectival; the adjective 

“polysyllabic” is polysyllabic. Each of these adjectives is, in Grelling’s 
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terminology, autological: each is true of itself. Other adjectives are 

heterological; thus “long,” which is not a long adjective; “German,” which 

is not a German adjective; “monosyllabic,” which is not a monosyllabic 

one.  

Grelling’s paradox arises from the query: Is the adjective “heterological” 

an autological or a heterological one? We are as badly off here as we were 

with the barber. (1966: 4) 

 

The Grelling paradox doesn’t really need to apply only to single adjectives, but could apply to 

whole phrases, nor does it require the invention of any special word such as “heterological”. As 

Quine points out, the paradox could be formulated in terms of “not true of self”. This phrase 

appears to be true of itself if and only if it is not. “Not true of itself” is just “heterological” 

spelled out. Quine says that he considers this an antimony, that is, a real shock to our intuitions; 

we can’t explain what is wrong with it.25  

Now Quine turns his attention to the venerable Liar paradox. He considers various forms of it, 

starting with the “paradox of Epimenides the Cretan, who said that all Cretans were liars”. (1966: 

6). He finds possible loopholes in this formulation and tries variants such as “I am lying” and 

“this sentence is false”. Finding possible objections to all these reformulations,26 he finally 

comes up with a famous formulation of his own:   

 

If, however, in our perversity we are still bent on constructing a sentence 

that does attribute falsity unequivocally to itself, we can do so thus: 

“‘Yields a falsehood when appended to its own quotation’ yields a 

falsehood when appended to its own quotation”. This sentence specifies a 

string of nine words and says of this string that if you put it down twice, 

with quotation marks around the first of the two occurrences, the result is 

false. But that result is the very sentence that is doing the telling. The 

sentence is true if and only if it is false, and we have our antinomy. (1966: 

7) 

 

That is a famous and very snappy form of the Liar paradox. Quine goes on to say: 
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This is a genuine antinomy, on a par with the one about “heterological,” or 

“false of self,” or “not true of self,” being true of itself. But whereas that 

earlier one turned on “true of,” through the construct ‘not true of self’, this 

new one turns merely on “true,” through the construct “falsehood,” or 

“statement not true”. (1966:7) 

 

Quine’s point is that it is a paradox on a par with the “heterological” one – presumably a 

different one.  

But is it really different? If we have a name for an object, say “Mars,” then “red” is true of 

Mars if and only if “Mars is red” is true, or equivalently, “is red” yields a truth after “Mars”. As 

we have emphasized before, if we have a systematic naming function, satisfaction or (‘true of’) 

can be reduced to truth simpliciter. In the present case, where linguistic phrases are involved, 

quotation forms just such a systematic naming function. Something will be true of the phrase “is 

long” precisely when the corresponding sentence becomes true with “is long” filling in the blank 

position.  

When does a phrase yield a falsehood when appended to its own quotation? Precisely when it 

is not true of itself. The paradoxical example really is:  

 

“yields a falsehood when appended to its own quotation” is not true of itself. 

 

Here the subject phrase “yields a falsehood when appended to its own quotation” is just 

another way of saying “is not true of itself”. This isn’t a paradox on a par with the 

“heterological” paradox; it is the “heterological” paradox, given that ‘true of’ can be reduced to 

‘true’. Any paradox regarding membership can be changed into one of satisfaction, and then 

changed into one regarding truth; and the simplest one is the Russell paradox. So this is not, as it 

is usually thought to be, Tarski’s clever and complicated form of the Epimenides paradox – it 

simply is the “heterological” paradox, using the fact that statements are nameable, here by 

quotation marks, and perhaps by some other form of code naming in a formal system. So, one 

shouldn’t say it is a genuine antinomy on a par with the “heterological” paradox; it is the same 

one.27 
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Notice that Quine doesn’t realize that he really has the “heterological” paradox all over again. 

And we don’t have to think of this as a form of the Liar paradox; we don’t have to notice that 

this is a statement that says “I am false”. If someone did not notice this, there would still be a 

paradox, namely, the “heterological” paradox, which is what it really is, souped up. So of course 

it is true if and only if it is false, because all paradoxes are like that; but if someone did not notice 

that this was a form of the Liar paradox, we could still get the result.   

Now, where, finally, does Gödel’s first incompleteness theorem in the form that he stated it fit 

in to all this? Let us forget about basing everything on such a weak system as School. The usual 

presentation of Gödel’s arithmetization does not rely on this. Given a suitable coding (Gödel 

numbering) of formulae and of proofs, we must be able to decide within the system we are 

studying whether a given sequence of formulae is a proof or not. The Tarski-Mostowski-

Robinson system R is sufficient,28 but as I have already emphasized, we should not forget that 

Gödel’s original purpose was not to prove the incompleteness of very weak systems, even, for 

example, first-order arithmetic, but of stronger systems such as PM (see the title of his paper). 

Then it is much easier to see that the system can decide whether a given sequence is a proof or 

not. And indeed, to see the representability within the system of primitive recursive functions 

and predicates. 

Suppose now we try to imitate the “heterological” paradox, only replacing satisfaction (or 

“true of”) by “provability of”. Replacing adjectives, or adjectival phrases, by formulae with one 

free variable (Gödel’s “class signs” – remember that we could even fix the free variable as x1), a 

class sign A(x1) is naturally called “provable of” a number n if A(0n) is provable, or alternatively, 

as we have seen, if ($x1)(x1 = 0(n) Ù A(x1)) is provable. Suppose that we identify formulae with 

their Gödel numbers. Then a particular formula Pr(x, y) with two free variables says that x is 

provable of y. ¬Pr(x1, x1) is class sign (in Gödel’s sense) that says that a formula is unprovable 

of itself. It itself has a particular Gödel number n, and ¬Pr(0n, 0n) is simply a way of saying:  

 

“Unprovable of itself” is unprovable of itself. 

 

This is precisely the statement G constructed by Gödel.  

Thus the basic statement G can be called Gödel’s form of the “heterological” paradox, and to 

the present writer its content is clearer than if it is regarded in terms of the Liar paradox.29 If our 
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base system, say, PM, is consistent, G cannot possibly be provable. For the proof would be a 

proof that “unprovable of itself” is unprovable of itself, and this very proof would show that 

“unprovable of itself” is provable of itself. Similarly, the reader can complete the argument to 

show that G cannot be disprovable either, assuming that PM is w-consistent. The argument can 

be carried through without noticing explicitly that G says something about itself (i.e. that it itself 

is not provable).30  

 From this point of view Gödel’s statement G is not just constructed, but makes a clear and 

well motivated statement. Sometimes I have used the term “Gödel heterological” for unprovable 

of itself, so that the statement G is “Gödel heterological is Gödel heterological”.31 It is a direct 

analogue of the “heterological” paradox, which in turn is an analogue of Russell’s paradox.  

Similarly, one could give an analogue of Quine’s variant of Russell’s paradox in terms of the 

class of all unreciprocated classes; one formula reciprocates a formula when it is provable of it. 

We have the predicate “Pr(x, y)” which says that x is provable of y in the sense defined above. 

We can call a one-place predicate (formula with one free variable or Gödelian class-sign) 

unreciprocated in terms of provability if there is no formula that it is provable of and of which it 

is provable, i.e. ¬($y)(Pr(x, y) Ù Pr(y, x)). Abbreviate this by Unr(x), a Gödelian class-sign. Let 

m be the Gödel number of this class-sign and let Unr(0m) be the formula G*. Once again, G* 

makes a universal statement, each instance of which is checkable. Now can G* be provable? Not 

if the underlying system is consistent. For if G* were provable then Unr(x) would by definition 

be provable of itself and hence reciprocated by itself, contrary to what it itself asserts, and hence 

contrary to a concrete and checkable instance of G*. So if the underlying system is consistent, 

G* is unprovable. However, what it says must be true. For it says that, for this particular formula, 

there is no formula that reciprocates it. If there were one, then there would be some formula H 

with the Gödel number n, and two proofs with Gödel numbers p1 and p2 that show that two 

formulae reciprocate each other. This would be a contradiction, since also these instances are 

checkable within the system. And what it implies is that H is unreciprocated, when in fact it also 

shows that G* reciprocates it. Since G* is a true purely universal statement, each numerical 

instance of which is verifiable in the system, it follows that if the system is w-consistent G* 

cannot be disprovable either. 

In the case of G, Rosser showed that if “provable of” is replaced by the more complicated 

predicate “provable of with no shorter disproof of”, where “shorter” is given in terms of the 
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Gödel numbering, the statement can be shown to be undecidable without assuming w-

consistency.32  
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The present paper is loosely based on a transcript of a talk delivered at the Hebrew University, in 
Jerusalem, Israel, on June 18, 2006. I have not entirely tried to abandon the conversational tone of the 
original. A version of this lecture was first given at the conference “Naming, Necessity and More” held at 
the University of Haifa, Israel, on June 21-24, 1999, and was subsequently given to other audiences. 

 
1 Many now wish to replace the old term ‘recursive’ with ‘computable’. Though I have done this 
sometimes, I am too used to the old terminology to make the change consistently. 
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2 As everyone knows, Gödel eventually codes finite sequences of natural numbers into single numbers. It 
is interesting that the coding system he uses in the preliminary sketch is not the famous Gödel numbering 
used in the detailed version that follows, but it is closer to the types of coding used by Quine (1940) and 
Smullyan (1961 and 1992). However, to see this, some modification of the way Gödel presents it would 
be required. Personally, I prefer the type of Gödel numbering introduced by Quine and Smullyan, and 
have my own variant of it (see Smullyan 1992: 46). I would also note that for most systems (those 
containing a Tarskian weak second-order logic), coding finite sequences of numbers into single ones is 
not really necessary, though it has become famous. Nor need one code finite sequences of such 
sequences. Gödel’s basic construction could still remain. 
 
3 Notice that Gödel here and elsewhere in the paper uses a horizontal sign above a formula to indicate 
negation. His official notation, however, see p. 150, is the usual ‘~’, and it is used when the system P (his 
version of Principia) is officially set up (e.g. pp. 155-7). On the other hand, on pp. 159 and 161 Gödel 
evidently uses ‘~’ for the material biconditional, and on p. 161 assumes that negation is expressed by a 
raised horizontal line. This is a bit confusing in a paper that otherwise is set out with great precision. My 
failure to notice this led me to use a raised horizontal line in another sense, but I hope I have fixed this. If 
not, let the context show what I mean. 
 
4 Actually, I disagree with the suggestion made by Gödel’s footnote (that is, that a statement saying 
directly of itself that it is unprovable would involve a faulty circularity). I think we can carry out his 
construction using a formula directly saying of itself that it is unprovable. See Kripke (1975b: 693, note 
6). Some people have advised me that my note deserves elaboration, as perhaps I will do elsewhere. Some 
such elaboration is in Kripke (1975a). 

One version of the construction mentioned, using a non-standard Gödel numbering, is independently 
due to Smullyan. In that footnote (1975b), I do say that I don’t maintain that a proposition (as opposed to 
a sentence, a linguistic object) can be directly self-referential in this sense, and perhaps this is what Gödel 
may have partly in mind. 
 
5 In note 14 Gödel says that “every epistemological antinomy can likewise be used for a similar 
undecidability proof”. I take “epistemological antinomy” to mean the same as what we would now call 
“semantic paradox”. 
 
6 The Burali-Forti paradox is a special case, since in the original theory there is no special reduction of 
ordinals to sets (or classes) of a certain kind. Moreover, there is the question of reducing relations to sets. 
There are various possible theories, including no reductions at all. In the latter case, the Burali-Forti 
paradox would not simply be a consequence of the unrestricted comprehension axiom schema. For the 
history of this paradox, see Moore and Garciadiego (1981). (Although I agree with them that Cantor did 
not regard the Burali-Forti result – even with Burali-Forti’s erroneous definition of a well ordered set 
corrected – as paradoxical, I do think he was aware of the mathematical fact that the ordinals cannot 
themselves form yet another well ordered set). 
 
7 Hausdorff refers to the “so called paradoxes of set theory” in Hausdorff (1914; 1957: 6, 29-30). 
 
8 Gödel’s attitude was that the paradoxes “are a very serious problem, but not for Cantor’s set theory” 
(Gödel 1947: 518). I agree (though with some reservations about the usual formulation of set theory). 
 
9 No relation to Gödel’s use of K above. 
 
10 For a long time I had never heard of insurance companies that insured other insurance companies 
against catastrophic claims. (They do exist.) Russell’s paradox shows that there couldn’t be an insurance 
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company (“Russell’s Insurance Company”) that insures all and only those insurance companies that do 
not insure themselves. 
 
11 Russell, of course, showed by his theory of descriptions that function letters and constants could be 
eliminated. See Russell (1905) and Whitehead and Russell (1910/1925, vol. 1: 30-2, 66-71, 173-5). 
 
12 I have not bothered putting the subscript on the variable in the unrestricted comprehension axiom 
schema. It is clear that it would hold, regardless of subscript. 
 
13 The matter is often stated in the form that semantically closed languages are inconsistent. But it is really 
axiomatic formal theories, not interpreted first-order languages that are not consistent. My own way of 
putting the matter would be that semantically closed languages, formulated in the usual first-order logic, 
do not exist. (I make this point in Kripke (1975a).) 
 
14 Put this way the result depends on the axiom of choice. Otherwise, we assume that D is Dedekind 
infinite, or, equivalently, has a countable subset. A weak use of choice is needed to establish the 
equivalence of this property with the infinity of D. 
 
15 Actually, I am probably being too conventional in attributing this result to Tarski. According to Wang 
(1987: 90), who himself refers to a letter from Gödel to Zermelo (reproduced with comments by Grattan-
Guinness), Gödel actually showed that a usual language cannot define its own truth in 1930, before going 
on to the incompleteness theorem. 
 
16 We don’t need names in the literal sense; in Russell’s theory of descriptions predicates simply uniquely 
satisfied by the object, for example, could take the place of names. (What we would need is a binary 
relation R(x, y), interpreted as saying that x uniquely satisfies the predicate y. So we need a variable y 
ranging over one-place predicates in the language.) 
 
17 But see also the remark on this dilemma below. 
 
18 The theory R in the classical monograph of Tarski et al. (1953) consisted of the axioms of School as 
presented in my text together with two axiom-sets: 
  

Ω4    x ≤	0(n) ⊃ x = 0 v x = 0’ v … x = 0n 
Ω5   x ≤	0(n) v 0n ≤ x 

 
Here the variable x is thought of as universally quantified and for any terms t1 and t2, t1 ≤ t2 abbreviates 

($w) (w + t1 = t2), where w is a variable not occurring in t1 and t2.  
The first four axioms including Ω4 are needed to show that Gödel’s original form of his theorem is 

provable for any system in which R is interpretable. Plainly, the authors thought that Ω5 was needed to 
obtain the Rosser form, and hence that R is essentially undecidable. However, Alan Cobham (1960) 
showed that R was interpretable in R- (the system with Ω5 omitted), and hence that we have nothing here 
that differentiates between the Gödel and the Rosser forms. The system School in the text does 
differentiate between the two, for one version of the Gödel theorem. 
 
19 Though I only later on noticed the relation with R. 
 
20 Suppose Gödel’s first incompleteness theorem had been proved only for first-order arithmetic. This 
might have been ascribed to a weakness in the system. Stronger systems, such as PM, still might decide 
all relevant statements. 
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21 This observation is due to D. A. Martin, and replaced a more complicated argument used before. 
 
22 That is, a bunch of quantifiers followed by something with no quantifiers: (Q1x1) . . . (Qnxn)( . . . ) 
 
23 That this form of the result needs to be non-constructive (i.e. that the independent statement cannot be 
found by recursive function, given, say, an arithmetical index for the axioms of S) was shown, when it 
came up in a version of this lecture, by D. A. Martin. His proof uses the recursion theorem. The present 
writer found another proof, perhaps more conceptual, but I recall somewhat longer.   
 
24 I believe that Grelling’s paradox originated in his thesis. The paradox is normally stated for natural 
language (see below), but could just as well be stated for a formal language. The same type of 
transformation could be applied to other instances of the unrestricted comprehension axiom schema. 
 
25 Similarly to the relation of the Russell paradox to the Grelling “heterological” paradox, we could define 
a semantic analogue of the “unreciprocated” paradox. An adjective, or adjectival phrase, could be called 
“reciprocated” if it is true of an adjective (or phrase) that is true of it; otherwise, “unreciprocated”. Then, 
is “unreciprocated” unreciprocated? The question leads to a contradiction. 
 
26 I am not certain that Quine really finds all these ways out completely cogent. 
 
27 In some sense, Tarski seems to have realized the connection. In Tarski (1935: 248, note 2), pretty 
clearly an addition to the original paper since it refers to a specific construction in a paper written later 
(Tarski 1944), Tarski seems to see that, in natural language, something analogous to the usual proof of the 
impossibility of a language containing its own truth definition really uses the Grelling paradox. He does 
not appear to apply his observation to formal languages, however. (I owe this remark to Joseph Almog.) 
 
28 The main point of the system is of course that it gives an axiom showing that bounded quantifiers are in 
fact eliminable in favor of finite disjunctions, and hence statements all of whose quantifiers are bounded 
are decidable. 
 
29 As is usual, given what Gödel says. The same goes for the Richard paradox. 
 
30 What is really used is that the statement is Π%&, or more loosely for present purposes, that it is a 
universal statement each instance of which can be checked within the system. In particular, the argument 
uses the fact that a proof of G can be recognized within the system. 
 
31 Nathan Salmon has suggested “hetero-Gödel”. 
 
32 In 2005 I gave a version of this lecture in Buenos Aires. Alberto Moretti wondered whether it would be 
necessary to produce a particular undecidable statement as Gödel did given the non-constructive proof of 
Gödel’s theorem, assuming that one was not at all worried about constructive proofs. However, not only 
is it nice to have a particular example, but it is needed for Gödel’s second incompleteness theorem. For 
one proves within PM (say) Con(PM) ® G. Hence, if PM is consistent, G is unprovable, and hence so is 
Con(PM). For this one needs a particular statement G for PM, or whatever system is in question. (Nor is 
the non-constructive proof obviously formalizable in the system as stated, since it uses the notion of 
arithmetical truth or definability, which in a weak enough language is not itself definable. It is nice of 
course that Gödel obtained a Π%&  statement and this is essential to the second incompleteness theorem as 
stated.) 
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