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 4 

 Traditionally, many writers, following  Kleene (1952) , thought of the Church-Turing 
thesis as unprovable by its nature but having various strong arguments in its favor, 
including Turing ’ s analysis of human computation. More recently, the beauty, power, 
and obvious fundamental importance of this analysis — what  Turing (1936)  calls 
 “ argument I ”  —  has led some writers to give an almost exclusive emphasis on this 
argument as  the  unique justification for the Church-Turing thesis. In this chapter I 
advocate an alternative justification, essentially presupposed by Turing himself in 
what he calls  “ argument II. ”  The idea is that computation is a special form of math-
ematical deduction. Assuming the steps of the deduction can be stated in a first-
order language, the Church-Turing thesis follows as a special case of G ö del ’ s 
completeness theorem (first-order algorithm theorem). I propose this idea as an 
alternative foundation for the Church-Turing thesis, both for human and machine 
computation. Clearly the relevant assumptions are justified for computations pres-
ently known. Other issues, such as the significance of G ö del ’ s 1931 Theorem IX for 
the  Entscheidungsproblem , are discussed along the way. 

 4.1   The Previously Received View and More Recent Challenges 

 It was long a commonplace in most writings on computability theory that the 
Church-Turing thesis, identifying the several mathematical definitions of recursive-
ness or computability with intuitive computability, was something that could be 
given very considerable intuitive evidence, but was not a precise enough issue to be 
itself susceptible to mathematical treatment (see, for example, Kleene ’ s classic trea-
tise [1952, section 62, 317 – 323]).  2   Some reservations to this view are already expressed, 
albeit relatively weakly, in  Shoenfield (1967) , section 6.5 (see 119 – 120), though the 
rest of the section follows Kleene (I owe this observation to Stewart Shapiro). Later 
in 1993, Shoenfield expressed himself more explicitly (see Shoenfield 1993, 26). 
What we would need, according to him, would be some self-evident axioms for, or 
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78 Saul A. Kripke

a characterization of, intuitive computability, implying that all intuitively comput-
able functions were Church-Turing recursive (computable). Harvey Friedman, in 
conversation with me (confirmed by Shapiro), had always taken a similar view.  3   

 I too had always felt that the issue of Church ’ s thesis wasn ’ t one that was obvi-
ously not a mathematical one, susceptible of proof or disproof, but could be a 
genuine technical problem, though I thought it may be very difficult.  4   I do think the 
axiomatic approach may well be viable, and indeed have said so; but I ’ m going to 
give a different approach to the issue of Church ’ s thesis here. 

 Two things had always led me to doubt what I have called the  “ conventional view ”  
(but see note 3, this paper), as quoted from Kleene. First, one half of the Church-
Turing thesis, that the recursive or Turing-computable functions are all in fact effec-
tively calculable, can I think easily be established simply on the basis of an intuitive 
notion of calculability. No axiomatization is required, just a direct argument. And 
the argument should be regarded as a rigorous intuitive  proof  of its result.  5   

 Second, it always seemed to me, as against those who held that there isn ’ t any 
actual mathematical question here but just an explication, that there is after all 
another thesis that might have seemed to have a lot of evidence for it in the old 
days. That is, that the effectively calculable functions simply should be identified 
with the primitive recursive functions.  6    Ackermann (1928)  actually  disproved  this 
thesis, by exhibiting a function that was obviously effectively calculable, but not 
primitive recursive. Now, clearly the Church-Turing thesis could in principle be 
disproved in the same way.  7, 8   Given that this is so, how can we say that a mathemati-
cal question is not involved, since there can be a disproof? 

 I resumed thinking about the subject of mathematical arguments for the Church-
Turing thesis as a reaction to  Soare (1996) . In his admirable survey of the history 
and philosophy of the subject, he proposed that the subject traditionally called 
 “ recursion theory ”  should be renamed  “ computability theory, ”  and that correspond-
ingly such terms as  “ recursively enumerable ”  should be renamed  “ computably enu-
merable. ”  This reform has been generally adopted by writers on the subject.  9   
However, I am probably too old and set in my ways, and do not propose here to 
stick to the reform. Also, in agreement with Slaman, a leading figure in the subject 
whom I gather does not propose to adopt the reform, I feel that the subject is as 
much in the area of definability as of computability.  10   

 Soare also rightly emphasizes that Turing (1936 – 37) gives an analysis of  human  
computation, and states that only the later work of  Gandy (1980)  shows that 
machine-computable functions (which may involve parallel processing) are Turing 
computable. 

 In spite of the salutary and correct emphasis by  Gandy (1980 ,  1988 ),  Sieg (1994 , 
1997), and  Soare (1996)  that Turing ’ s original paper was an analysis of  human  com-
putation, and that for Turing, following his contemporary usage,  “ computer ”  means 
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The Church-Turing “Thesis” as a Special Corollary 79

 a person who computes ,  11   ,    12   not the later idea of a computing machine, nevertheless 
the influence of the  “ Turing machine ”  (and perhaps the subtle influence of his later 
philosophical paper  Turing 1950 ) has led in many writings to a computer-science 
orientation to the problem. The contemporary situation, where high-speed comput-
ing machines are an essential part of our culture, is clearly also an influence.  13   I am, 
however, a logician and wish to explore the issue from a logical orientation. And 
here I have some genuine issues with what some other people appear to write. 

 The commonly used phrase  “ Turing ’ s argument ”  suggests that Turing ’ s 1936 – 37 
paper gave a single argument for his analysis of human computability. In fact, as 
Shagrir has already mentioned at a conference in 2006,  14   Turing gave three in the 
original paper, one of which is the one generally remembered (the first; see section 
1, 117, and argument I, 135 – 38). In many ways, the conventional emphasis on this 
argument is indeed appropriate, since it directly attempts to show, by a penetrating 
analysis of human computation and its limits, that anything humanly computable 
must be computable on his machine. (See also the exposition in  Kleene 1952 , 
356 – 363, 376 – 381.) Nevertheless, I myself will primarily be concerned with his 
second argument (argument II, Turing 1936 – 37, 138) in the main body of this paper. 
But that will come later. 

 Soare, following  Sieg (1994 , 1997) and  Gandy (1988) , gives a careful mathematical 
and philosophical analysis of Turing ’ s first argument. He proposes to break it into 
two different steps. One equates the informal notion of effective computability with 
what he calls  “ computorability, ”  namely computability by an idealized human com-
puter. Presumably this is a philosophical analysis. But then, Soare states (following 
 Gandy 1988 , 82; see also  Gandy 1980 , 124) that  “ Turing then proved  Turing ’ s theorem: 
Any computorable function is Turing computable . Although not proved in a formal 
system, Turing ’ s proof is as rigorous as many in mathematics ”  (293). 

 As  Gandy (1980 , 124) stated Turing ’ s theorem —  “  what can be calculated by an 
abstract human being working in a routine way is computable  ”   15   — it seemed to me 
to be too vague a statement to be regarded as a theorem without some further 
explanation. However, Soare ’ s more detailed statement comes much closer, since he 
carefully divides the argument into a philosophical part, equating intuitive calcula-
bility with an analysis of what might be required of an idealized human computer 
( “ computor ” ), and then a technical or mathematical part, showing that anything 
computable by such an idealized person is, in fact, Turing computable (i.e., comput-
able on a Turing machine). Nevertheless, aside from the fact that, as Davis remarks, 
 “ this is a brilliant paper, but the reader should be warned that many of the technical 
details are incorrect as given ”  ( Davis 1965 , 115) the analysis contains at least one 
definite piece of handwaving. Turing (1936 – 37, 135) remarks that  “ in elementary 
arithmetic the two-dimensional character of the paper is sometimes used [ . . . ] and 
I think that it will be agreed that the two-dimensional character of the paper is no 
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80 Saul A. Kripke

essential of computation. I assume then that the computation is carried out on one-
dimensional paper, i.e. on a tape divided into squares. ”  Maybe it would be agreed, 
but nothing has been argued, much less proved. Others have commented on this 
gap, and how it can be filled. Nevertheless, such considerations make it plainly desir-
able that the philosophical analysis of idealized human computability be built into 
an axiomatization, so that the argument can be properly evaluated. Soare ’ s remarks 
already go in that direction, but an actual axiomatization has been given by  Sieg 
(2008) .  16   

  Soare (1996 , 296) proposes that  “ Turing ’ s Thesis be used as a  definition  of a com-
putable function as Turing and G ö del suggested. ”   Prima facie  this seems incompat-
ible with his own assertion that Turing gave an elaborate proof of a  theorem  stating 
that his analysis of human computability gives the right notion. In the interesting 
section 3.4 (296 – 298), Soare argues that historically  “ other  theses  became defini-
tions ”  [my italics], and quotes the arguments of other unnamed senior logicians who 
do not agree with his view.  17   

 Did Turing regard his first argument, as Gandy, Soare, and perhaps G ö del before 
them, and many after them, have thought, as proving a theorem? If he did, why did 
he give two other arguments? In fact, he says:  “ All arguments which can be given 
[for the identification of the Turing-computable numbers with those that would 
intuitively be regarded as computable] are bound to be, fundamentally, appeals to 
intuition, and for this reason rather unsatisfactory mathematically. ”  His first argu-
ment he calls  “ a direct appeal to intuition ”  (Turing 1936 – 37, 135).  18   It is certainly 
more than just that, since it gives an elaborate philosophical analysis of what an 
ideal computation might be. Nevertheless, Turing would be a very unusual case of 
a mathematician who proved a theorem without realizing that his own argument 
was such a proof.  19   My own alternative analysis will be very close to his second 
argument, which has mostly been ignored in discussions of Turing ’ s 1936 – 37 paper. 
It will also be rather close to the argument given by Church (1936a).  20   

 4.2   Computation as a Special Form of Mathematical Argument 

 My main point is this: a computation is a special form of mathematical argument. 
One is given a set of instructions, and the steps in the computation are supposed to 
follow — follow deductively — from the instructions as given.  So a computation is just 
another mathematical deduction, albeit one of a very specialized form.  In particular, 
the conclusion of the argument follows from the instructions as given and perhaps 
some well-known and not explicitly stated mathematical premises. I will assume that 
the computation is a deductive argument from a finite number of instructions, in 
analogy to Turing ’ s emphasis on our finite capacity. It is in this sense, namely that I 
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The Church-Turing “Thesis” as a Special Corollary 81

am regarding computation as a special form of deduction, that I am saying I am 
advocating a logical orientation to the problem. 

 Now I shall state another thesis, which I shall call  “ Hilbert ’ s thesis, ”   21   namely, that 
the steps of any mathematical argument can be given in a language based on first-
order logic (with identity).  22   The present argument can be regarded as either reduc-
ing Church ’ s thesis to Hilbert ’ s thesis, or alternatively as simply pointing out a 
theorem on all computations whose steps can be formalized in a first-order 
language. 

 Suppose one has any valid argument whose steps can be stated in a first-order 
language. It is an immediate consequence of the G ö del completeness theorem for 
first-order logic with identity that the premises of the argument can be formalized 
in any conventional formal system of first-order logic. Granted that the proof rela-
tion of such a system is recursive (computable), it immediately follows in the special 
case where one is computing a function (say, in the language of arithmetic) that the 
function must be recursive (Turing computable). 

 For example, if one has a valid argument from finitely many premises, and the 
natural number  n  is represented by 0 (   n   )  (0 with  n -strokes, i.e., successor symbols; a 
single function letter  f  might be the natural representation of successor), and the 
premises allow one to conclude for each particular  n  either  P (0 (n) ) or its negation,  23   
it follows that the set defined by the predicate  P  is recursive (Turing computable). 
The same sort of argument will show that any function whose graph is computable 
in this sense by an argument whose steps are in a first-order language must also be 
recursive. 

 Particular examples are easily found from elementary primitive recursion. For 
example, which numbers are even can be decided from axioms stating that 0 is even, 
and that a successor of an even number is not even, while the successor of a number 
that is not even is even. One could similarly analyze the usual recursive definitions 
of addition, etc. 

 Although I do not find his argument II to be entirely clearly presented,  24   I take 
Turing to be arguing that precisely those sets which are computable in the sense of 
deducibility in first-order logic ( “ the Hilbert functional calculus ”  in his own termi-
nology) are the Turing-computable sets (Turing 1936 – 37, 138 – 139). Church also, 
though not committed at that time, or at least in his initial paper, to any special 
primacy of conventional first-order logic, also argues that anything formalizable in 
a symbolic logic that is recursive ( λ -definable), in its axioms and rules, must also 
compute only recursive functions. (See Church 1936a and the exposition in  Sieg 
1997 .)  25   It is because of these considerations that I take myself to be reviving some-
what neglected arguments already given by Church, and especially Turing. 

 One should therefore notice the following: at the time the classical definitions of 
Church, Herbrand-G ö del-Kleene, and Turing were given, and in fact even rather 
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82 Saul A. Kripke

earlier, another definition of computability was at hand. One could have defined a 
set (relation, function) as decidable (computable) if instance-wise membership and 
non-membership in the set can be decided by a proof from a finite set of instructions 
(axioms) statable in a first-order language.  26   The point, as I have stressed, is that a 
computation is a deduction of a special sort. Given the G ö del completeness theorem, 
it follows immediately that this definition is equivalent to the classical definitions 
just mentioned, because intuitive provability can be identified with provability in a 
standard formal system. And these, of course, are systems with a recursive proof 
predicate in the classical senses just mentioned. 

 Taking the approach just mentioned as basic has advantages that I will go into 
shortly. The main advantage of any mathematical definition of computability, with 
an accompanying thesis identifying it with the intuitive notion, is that it allows one 
to prove negative results, that various sets are not decidable, etc. The present 
approach has that advantage in common with the others, but it is especially suited 
to the  Entscheidungsproblem , as may already be clear, and will be spelled out below. 
There are also other advantages, some of a historical sort, also to be spelled out 
below. 

 Another relatively minor advantage of the approach of deducibility in a first-
order language, but one which has bothered the present writer, is simply pedagogi-
cal. Ever since Post ’ s famous paper (1944), the advantages of an intuitive presentation 
of computability arguments has been evident, rather than the rival approach using 
a formal definition of computability in the proofs. Although the experienced com-
putability theorist will know how to convert such arguments into proofs using a 
formal definition, and cannot be said to be relying on an unproved thesis, this is 
hardly true for a beginner.  27   However, such a beginner, if he has already studied 
elementary logic, will readily accept that the steps of an argument can be stated in 
a first-order language, even if they are given verbally. The G ö del completeness 
theorem guarantees that if the steps really do follow (using any implicit axioms in 
addition to the actually stated steps), the argument can be formalized in one of the 
usual systems. Granted that the proof predicate of such a system is recursive/com-
putable by one of the usual definitions, that one really has a technically valid proof 
will be readily accepted. 

 Soare remarks (see  Soare 1996 , 299) that Kleene ’ s equation calculus and 
 μ -recursive formalism, contrary to what some have claimed, is no better than the 
Turing machine or other formalisms in providing proofs that are readily compre-
hensible to the reader or student. He applauds the change to intuitive proofs (with 
reference to a machine formalism), as in  Rogers (1967)  and subsequent textbooks. 
Using the present approach, this change is easily justified by the definitions. 
(However, I cannot quite assert that all formalisms are impossibly difficult for the 
beginner, at least at an elementary level. In my own lectures [ Kripke 1996 ], I had 
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The Church-Turing “Thesis” as a Special Corollary 83

some success using a formalism roughly equivalent to using  Σ  1  definability for recur-
sive enumerability. Students were supposed to give and understand proofs in the 
formalism, not invoking Church ’ s thesis.  28   There may be other possibilities.) 

 For the reasons just given, I have thus proposed that derivability from a finite set 
of instructions statable in a first-order mathematical language be taken to be the 
basic technical concept of computability. However, if this is not done, one can use 
the G ö del completeness theorem for any conventional formalism to show the equiv-
alence of this characterization to any standard characterization, by showing that the 
proofs in this conventional formalism are all decidable in the sense of the standard 
characterization. I take it to be the point of Turing ’ s second argument for his own 
characterization in terms of Turing machines, that the equivalence of the character-
ization of computability in terms of formal first-order logic as just described and his 
own characterization in terms of Turing machines can be shown to be equivalent. 
His third argument appears to be a synthesis of the first two. As to the relation of 
the first two arguments, one can be thought as emphasizing human beings as operat-
ing mechanically on paper, the other as thinking beings, deducing the results of their 
computations from the instructions given. 

 The reference to Turing ’ s second argument might be used to bring out two 
things. First, it would not matter if Turing had allowed two-dimensional or indeed 
 n -dimensional computations, provided he had given conventional instructions for 
the operation of his  n -dimensional machine at each stage. The argument would still 
follow as long as the operation of the machine was deterministically stated in con-
ventional mathematical language, formalizable in first-order logic. The same holds 
if we view Sheperdson-Sturgis  “ register machines ”  as linear computations. The state 
of the machine at any stage is still a finite configuration that can be coded into a 
natural number.  29   One can then define a two-place predicate whose graph is a single 
valued function (or alternatively allow function letters; see below),  R ( n ,  m ), meaning 
that the  n th stage of the computation is the state coded by  m . Single valuedness can 
be an axiom, and the transition from a given stage to its successor can be given by 
statable axioms describing the operation of the machine. The value of the function 
being computed or predicate being decided can then be determined by appropriate 
axioms describing how it is to be retrieved from the final state. This approach is 
possible whenever we have a deterministic linear computation. So my second point 
is this characterization of arbitrary deterministic linear computations. Of course, one 
need not be so explicit, numbering the linear steps. One can simply present a par-
ticular computation, step by step, as linear. 

 However, one need not restrict oneself to linear computations. Kleene ’ s formal-
ism ( Kleene 1952 ) with an equation calculus is an example of a nonlinear formalism. 
Generalizing this, one needs only a finite set of instructions for the computation, 
and the equations (or predicate assertions and their negations; see below) are 
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84 Saul A. Kripke

whatever can be deduced from these instructions by allowable rules. In such a case, 
the basic postulates may allow inconsistencies to be deduced (conflicting values for 
functions, or proofs of a formula and its negation). No real computation will allow 
such inconsistencies, but there will not in general be a syntactic criterion to rule 
them out. However, to obtain an enumeration theorem for all such computations, 
one will have to have a priority ordering for different deductions, with  “ least ”  deduc-
tions being preferred. This is, in effect, what Kleene does. 

 Some side remarks: Kleene pointed out that the formalism of recursion theory 
and the avoidability of a diagonal argument is best handled by making the theory 
a theory of  “ partial recursive ”  functions. If the formalism of first-order logic allows 
function letters and terms, it would thus be best to allow them to be partial. Given 
this, we might use free logic rather than traditional first-order logic, so that universal 
instantiation is allowed only in the presence of an existential premise. That is, the 
axiom scheme of universal instantiation becomes (( x ) (F x   ∧  ( ∃  y )( y  =  t ))  ⊃  F t ) (or 
in a natural deduction system the rule of universal instantiation is correspondingly 
modified; we assume the usual restrictions on substitution). In spite of its obvious 
connection with the theory of partial recursion, for some reason free logic has been 
of much more interest to philosophical logicians than to mathematical logicians. 

 Alternatively, one could not allow function letters and terms in the language, only 
relation symbols. Any function can be replaced by its graph. One can then use con-
ventional first-order logic and not worry about the question of empty terms. Essen-
tially, this was one of Russell ’ s main ideas in his theory of descriptions (see  Russell 
1905  and  Whitehead and Russell 1910 ). 

 Second, for the special type of mathematical argument I am considering (namely, 
computation), conventional first-order logic is clearly more than sufficient. Who 
would use in such an argument steps with premises involving many changes of 
quantifiers over an infinite domain? So, I think a really much more restricted lan-
guage has to suffice here. (It would resemble Skolem arithmetic in allowing only 
bounded existential quantifiers.)  30   However, we do not need to worry about such 
restrictions. No argument needed here seems to be affected if we allow all first-order 
logic. 

 Also, when I refer to first-order logic, it is convenient in practice to allow many 
sorted systems, though one could reduce them to a conventional system with only 
one domain, and in my theoretical discussions immediately below, I will assume that 
this has been done. 

 Finally, though I believe, given the limitations of the human mind, that any actual 
computation is a derivation from a finite number of instructions, nothing is lost in 
terms of the actual power of the definition if infinitely many premises are allowed, 
provided these are already known to form a computable set (for example, a primi-
tive recursive set of axioms).  31   
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The Church-Turing “Thesis” as a Special Corollary 85

 4.3   Von Neumann ’ s Problem of Characterizing and Proving Unsolvability and 
G ö del ’ s Theorem IX 

 Suppose we had taken derivability by a computation expressible in a first-order 
language as one ’ s basic definition of computability. Then given the G ö del complete-
ness theorem, any conventional formalism for first-order logic will be sufficient 
to formalize such derivability. In fact, in addition, one can give a universal charac-
terization, also formalized in a first-order system, of derivability in arbitrary first-
order systems. This will be the analog of the  “ universal Turing machine. ”  It will 
be a short and direct step to conclude the undecidability in this sense of the 
 Entscheidungsproblem . 

  Gandy (1988)  gives a fascinating history of the development of notions of effec-
tive calculability.  32   He shows that the Hilbert school hoped and expected that the 
 Entscheidungsproblem  would prove to be solvable. It also hoped that such usual 
systems as Peano arithmetic would prove to be complete. The first expression of 
pessimism Gandy quotes within the Hilbert school  33   is from  von Neumann (1927) , 
who worries that a decision procedure for the  Entscheidungsproblem  would in effect 
abolish mathematics in place of a mechanical procedure, and therefore conjectures 
that such a procedure does not exist. He states,  “ We cannot at the moment prove 
this. We have no clue as to how such a proof of undecidability would go ”  (quoted 
in  Gandy 1988 , 62). 

 Gandy also has a somewhat similar quotation from G. H. Hardy:  

 Suppose, for example, that we could have a finite system of rules which enabled us to say 
whether any given formula was demonstrable or not [ . . . ]. There is of course no such theorem 
and this is very fortunate, since if there were we should have a mechanical set of rules for 
the solution of all mathematical problems, and our activities as mathematicians would come 
to an end. ( Hardy 1929 , 16; quoted in  Gandy 1988 , 62)  

 The context of this quotation is explicitly a discussion of Hilbert ’ s metamathemat-
ics, and what would be desirable (a consistency proof) and undesirable (what we 
have quoted). However, he neither identifies this question with the  Entscheidungs-
problem  for first-order logic, nor speculates (as von Neumann does) on the 
need for a proof of the impossibility of such a solution (or of such a finite set of 
rules).  34   

 Gandy ’ s next section discusses G ö del ’ s Theorem IX in his famous paper ( G ö del 
1931 ; references are to the 1986 reprint). I think this theorem, and its anticipation 
of  “ Church ’ s theorem, ”  was for a long time neglected, but is now well known. The 
theorem states: 

  In any of the formal systems mentioned in Theorem VI, there are undecidable problems of the 
restricted functional calculus  (that is, formulas of the restricted functional calculus for which 
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86 Saul A. Kripke

neither validity nor the existence of a counterexample is provable). ( G ö del 1931 , 187, quoted 
in  Gandy 1988 , 63; italics in text, citations omitted) 

 G ö del goes on to say, 

 This is a consequence of Theorem X.  Every problem of the form (x) F(x) (with  [primitive] 
 recursive F) can be reduced to the question whether a certain formula of the restricted func-
tional calculus is satisfiable  (that is, for every [primitive] recursive  F , we can find a formula 
of the restricted functional calculus that is satisfiable if and only if ( x )  F ( x ) is true). ( G ö del 
1931 , 187) 

 Gandy goes on to comment as follows: 

 Since the systems considered are   ω  -consistent extensions of a formulation  P  of the simple 
theory of types, they are powerful enough to define and prove simple facts about the satisfac-
tion relation for the predicate calculus. For any such system  Σ  [primitive recursive   ω  -consistent 
extensions of simple type theory] G ö del constructs a formula  φ   Σ   which is satisfiable, but for 
which this fact cannot be proved in  Σ . As a consequence, given any proposed algorithm  α  for 
the Entscheidungsproblem and any system  Σ , either it cannot be proved in  Σ  that  α  always 
gives an answer, or it cannot be proved in  Σ  that its answer is always correct. ( Gandy 
1988 , 63) 

 He concludes:  “ Thus G ö del ’ s result meant that it was almost inconceivable that 
the  Entscheidungsproblem  should be decidable: a solution could, so to speak, only 
work by magic ”  (63). 

 Gandy ’ s conclusion here strikes me as much too weak. It seems to me that G ö del ’ s 
result  proves  that the algorithm  α  simply  cannot  be correct. First, we can simply 
suppose that in our extended system  Σ  we include axioms describing the alleged 
algorithm  α . It describes a computation, which according to my familiar viewpoint, 
if it is to be an appropriate algorithm, its steps should follow from each other, and 
therefore be provable given the G ö del completeness theorem.  35   Let  A ( x ) be the 
statement that  α  terminates with the conclusion that  x  satisfies the algorithm. Then 
for each  n , either  A (0 (   n   ) ) or its negation is provable.  36   If the algorithm  α  is supposed 
to coincide with validity, simply add an axiom saying so, ( x )( A ( x )  ≡  Val ( x )). The 
resulting system is not   ω  -consistent, and therefore its axioms cannot be true. Hence 
(assuming the fault does not lie in the underlying system), the additional axioms 
cannot be true:  α  is supposed to be a genuine algorithm whose steps really follow 
from each other, so the fault can only lie in the failure of the last axiom ( x )( A ( x )  ≡  
Val ( x )) to be true. 

 Note that though G ö del stated his result for extensions of simple type theory, he 
knew and claimed that it held for a variety of primitive recursively axiomatizable 
extensions of various systems, ranging from ZF set theory to weaker systems, such 
as first-order number theory.  37   
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The Church-Turing “Thesis” as a Special Corollary 87

 Another way of looking at the matter of G ö del ’ s Theorem IX is as follows. In 
the same paper, G ö del introduces the notion of an  Entscheidungsdefinit  predi-
cate  38   (in modern terminology, one that is strongly representable, binumerable, or 
numeralwise decidable), and states that his basic undecidability result (Theorem 
VI) still holds for any  Entscheidungsdefinit  ω  -consistent extension of the basic 
system, since this is the only property of primitive recursiveness that has actually 
been used. He then states that the predicate of the universal statement that is 
undecidable would have to be  Entscheidungsdefinit , not necessarily primitive 
recursive. A decision procedure for the predicate calculus would lead to an  Ents-
cheidungsdefinit  predicate for validity or provability in some basic extension of 
the axiom system. 

 Nowadays, we would know that the form of the undecidable statement would not 
really change, and could go on to G ö del ’ s Theorem IX as before. However, G ö del 
does not seem to have known this in 1931. In fact, he does not realize until 1936  39   
(about the same time that the work of Church and Turing appeared) that for all 
reasonably strong systems, the class of sets definable by an  Entscheidungsdefinit  
predicate is the same (the recursive sets). 

 Gandy goes on to state that G ö del ’ s work did lead to skepticism about the solv-
ability of the  Entscheidungsproblem  (63, section 6.1), and specifically mentions 
Herbrand and Sch ü tte. In section 6.2, he asks,  “ A natural question to ask is why 
neither G ö del nor von Neumann  proved  the undecidability of the Entscheidung-
sproblem ”  (63). G ö del did not seem to have  regarded  himself as proving the unde-
cidability. In his later paper ( G ö del 1933 ), he gives a decidable class ( “ the G ö del 
case ” ) and then shows that what may be natural to regard as the next largest case 
is a reduction class; that is, a decision procedure for it would lead to the decidability 
for the whole predicate calculus.  40   He does not say that such a decision procedure 
has been shown to be impossible. And we all know that he felt the question to be 
decided only by Turing ’ s work. 

 From conversation I have the impression that some logicians feel that G ö del 
came very close to a negative solution to the  Entscheidungsproblem , or even that 
all that was lacking was a version of Church ’ s thesis. In any event, I feel that this 
is so. A decision procedure for the  Entscheidungsproblem  would have to be a 
procedure statable in the ordinary language of mathematics, whether the proce-
dure operates by a machine program or instructions for a human computation. 
(Notice that in Gandy ’ s exposition, ending with a weaker claim, it is still assumed 
that the algorithm  α  is statable in some extension of  P , or whatever basic system 
is involved.) It could presumably be written in the language of  P , perhaps with 
additional predicates and an additional finite number of instructions. G ö del ’ s 
Theorem IX clearly directly implies Turing ’ s result that the  Entscheidungsproblem  
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88 Saul A. Kripke

is not decidable on one of his machines, since we can simply add an axiomatization 
of the operation of the machine to his basic system.  41   As I said, the result would 
still obtain if Turing had allowed many dimensions. Similarly for a large class of 
mechanical procedures. 

 Thus I regard G ö del ’ s Theorem IX as already answering von Neumann ’ s 1927 
problem,  “ we have no clue as to how such a proof of undecidability would go ”  
(quoted by  Gandy 1988 , 62). In this respect, I disagree with the presupposition of 
Gandy ’ s question quoted before:  “ A natural question to ask is why neither G ö del 
nor von Neumann  proved  the undecidability of the Entscheidungsproblem ”  (63). 
But Gandy ’ s question is appropriate in the following form: why didn ’ t G ö del and 
von Neumann regard Theorem IX as such a proof? One problem in the argument 
I have given that Theorem IX is such a proof is its free use of the notion of truth, 
and locating the trouble in one extra axiom that must be false. However, it seems 
very unlikely that G ö del, at least, would have regarded that as a questionable part 
of the argument.  42   What seems most likely lacking is an appropriate analog of 
Church ’ s thesis. 

 4.4   Some Clarificatory Remarks on the Present Characterization 

 Let me state a few issues that I exclude from the domain of the present character-
ization of computability. In  G ö del (1972) , G ö del finds what he regards as  “ a philo-
sophical error in Turing ’ s work ”  (306). It is not utterly clear to me what Turing ’ s 
error is supposed to be, but it is characterized as  “ an argument which is supposed 
to show that mental procedures cannot go beyond mechanical procedures ”  (306).  43   
The error appears to be in Turing ’ s assumption that only a finite number of states 
of mind need to be admitted. He says:  

 What Turing disregards completely is the fact that  mind, in its use, is not static, but constantly 
developing  [ . . . ]. Therefore, although at each stage the number and precision of the abstract 
terms at our disposal may be  finite , both (and, therefore, also Turing ’ s number of  distinguish-
able states of mind ) may  converge toward infinity  in the course of the application of the 
procedure. Note that something like this indeed seems to happen in the process of forming 
stronger and stronger axioms of infinity in set theory. This process, however, today is far from 
being sufficiently understood to form a well-defined procedure. It must be admitted that the 
construction of a well-defined procedure which could actually be carried out (and would yield 
a non-recursive number-theoretic function) would require a substantial advance in our under-
standing of the basic concepts of mathematics.  44   (306) 

 Arguments by G ö del cannot be taken lightly, but it is difficult for me to see how 
G ö del has found any philosophical error in Turing ’ s work, if that work is supposed 
to show what number theoretic functions can be regarded as effectively computable, 
even though we do not identify mental calculation with mechanical or routine cal-
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culation. G ö del directs his argument against Turing ’ s argument I, but the objection, 
if valid, would apply to my own approach also, similar to Turing ’ s argument II. It is 
difficult for the present writer to see why Kleene is not obviously correct when 
he says,  

 Thus algorithms have been procedures that mathematicians can describe completely to one 
another  in advance  of their application for various choices of the arguments. How could 
someone describe completely to me  in a finite interview  a process for finding the values of a 
number-theoretic function, the execution of which process for various arguments would be 
keyed to more than the  finite  subset of our mental states that would have developed by the 
end of the interview, though the total number of our mental states might converge to infinity 
if we were immortal ( Kleene 1988 , 50).  

 Thus I have regarded a function as computable when its values can be obtained for 
all arguments from some fixed finite set of instructions.  45   

 It does not seem to me particularly relevant that the directions be public, that 
more than one person is involved.  46   It suffices that someone gives a finite set of 
directions to herself. Also it does not matter that the calculation be  “ mechanical, ”  
if this is a genuine limitation.  47   Any intelligible set of directions suffices, as long as 
they can be understood in classical first-order logic. 

 I also exclude from my discussion any consideration of computability based on 
intuitionism or intuitionistic ideas, in particular on the  “ intended interpretation ”  of 
intuitionistic logic. Kreisel has emphasized the following: if one has a proof of a 
statement of the existence of a natural number in an intuitionistic formal system, 
then, if intuitionism is really constructive, one must be able to calculate from the 
G ö del number of the proof of the existential statement to the numerical instance 
of that statement  given  by the proof ( Kreisel 1970 ). And notice that though we may 
have various technical proofs that a particular intuitionistic system has  “ the numeri-
cal instantiation property ”  and some such technical proof may determine an appro-
priate recursive or Turing-computable function, who knows whether that is the 
 “ right ”  number in Kreisel ’ s sense?  48   Certainly, Turing ’ s analysis of computation (his 
argument I) does look irrelevant here, as does that of the present paper, based on 
classical first-order logic. I simply wish to exclude this problem; intuitionism plays 
no role in the sense of computability developed here. I think this sense includes 
anything called a  “ calculation ”  in the ordinary sense. (This sense is also developed 
in Turing ’ s argument I.) 

 I also wish to exclude questions of empirically or physically based computation 
(which has already been alluded to in Martin Davis ’ s talk at a 2006 conference). 
Below I will give an example of what I wish to exclude. Here we are talking about 
 mathematical  computation, whether done by a human being, or a machine,  49   or 
anything else. 
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 Robin Gandy wrote a well-known and mathematically ingenious paper trying to 
generalize Turing ’ s first argument to computing machines ( Gandy 1980 ). He reports 
that many with whom he discussed the matter doubt that there is any problem to 
be solved, but others agree with him that Turing ’ s analysis might fail for modern 
computing systems that use parallel processing. In his paper, Gandy gives a formal 
model (in hereditary finite sets from a set of atoms) for such computation. He then 
imposes a locality condition, which is supposed to mean that although parallel pro-
cessing is allowed, one branch cannot influence another that is too far apart. 

 My main point in this part of the discussion will be to propose the basic 
approach of the present paper as an alternative to Gandy ’ s, not only for human 
computation but for machine computation, including the types of cellular autom-
ata that worried Gandy. But no claim will be made about what machines are 
empirically realizable. 

 If Gandy had stipulatively defined his class of machines, there would be no issue 
of an empirical basis.  50   However, in fact Gandy appeals to special relativity to justify 
his new locality condition. (The idea is that no influence can travel faster than light.) 
He even wonders whether a machine whose operation is compatible with Newto-
nian physics might compute a nonrecursive function, even an arbitrary function (in 
his colorful terminology, exercise  “ free will ” ).  51   

 Some important writers have held that Gandy was indeed the first to prove that 
actual digital computers do compute only the recursive (Turing-computable) func-
tions.  52   However, an appeal to special relativity makes the adequacy of Gandy ’ s 
analysis an empirical issue, depending on the actual state of physics. Because of this 
a wealth of literature gives putative counterexamples, in both hypothetical  53   and 
possibly true physics (see  Copeland and Shagrir 2007  for a survey). There appears 
to be a particular interest in what I have been inclined to call  “ Zenonian calcula-
tion, ”  where one can perform an infinite number of operations in a finite time, 
analogously to Zeno ’ s paradox. Then one could plainly go beyond the recursive or 
Turing-computable functions, as Copeland and Shagrir explain.  54   In particular, many 
authors are discussed who speculate on models of general relativity in which what 
appears to be a computation of the infinite (and thus maybe Zenonian) type in one 
part of the model is only finite in time from another, later point of view. This litera-
ture is only slightly known to me, and much is beyond my competence to evaluate, 
would I have studied it. However, it does seem clear that if one bases Gandy ’ s thesis 
on empirical questions of physics, one is on dangerous ground, even if there is no 
known violation by the computing machines of today. 

 Copeland and Shagrir also do discuss (2007, section 3)  “ non-discrete machines ”  
that make use of continuously valued quantities. As they say, in Gandy ’ s published 
paper he explicitly excludes  “ devices which are  essentially  analogue machines ”  
( Gandy 1980 , 125), though he mentions some possibilities. In unpublished work, 
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Gandy does consider such devices, and conjectures a strategy to succeed in showing 
that no feasible such device goes beyond Turing computability (see the discussion 
of Gandy ’ s unpublished manuscript in  Copeland and Shagrir 2007 , section 3). 

 One very simple example of that kind that has always troubled me is as follows. 
Consider such dimensionless physical constants as the electron-proton mass ratio, 
or the fine structure constant.  55   As far as I have heard, at the present time physical 
theory has nothing much to say about the mathematical properties of these numbers, 
whether they are algebraic or transcendental, or even rational or irrational. In par-
ticular, it might well be the case that the decimal expansions of these numbers are 
not Turing computable. Assume this is so, and also assume that time is infinite in 
extent and that there are no limitations in energy that prevent computations of these 
decimals to any number of places. As far as I can see, nothing in principle rules this 
out. Then an empirically possible machine would exist that calculates a decimal not 
computable in Turing ’ s sense.  56, 57   

 This example could have philosophical implications for the physical applicability 
of other theories. Hermann Weyl, in his famous monograph (Weyl 1918), showed 
how a great deal of analysis can be done allowing only arithmetically definable reals. 
Extensive and mathematically impressive work, which I much admire, has been 
done by Solomon Feferman, extending Weyl ’ s ideas to richer systems with higher 
types. Feferman emphasizes that everything can be done in a conservative extension 
of Peano arithmetic (first-order arithmetic). Here we are concerned only with the 
question of whether this work is adequate for physics, which Feferman has explicitly 
claimed to be the case (see  Feferman 1992 ).  58   

 Not only is there no reason to suppose that the electron-proton mass ratio, 
described as a decimal, is Turing computable, there is no reason to suppose that it 
is arithmetical, hyperarithmetical, or, for that matter, definable in set theory. For all 
we know, the physical theory of the future may somehow imply that the truth set 
for Peano arithmetic is definable in terms of the electron-proton mass ratio, and 
even use it to show that physical theory is not a conservative extension of that system. 

 Let me propose an alternative to Gandy ’ s approach, divorcing the question of 
machine computability from all empirical assumptions. As I said, computation is 
simply a form of mathematical argument. Let us consider only those devices that 
are describable in a first-order language, and whose program is such that the suc-
cessive states logically follow from each other, one by one, together with the program 
and perhaps some basic mathematical assumptions. Any particular computation by 
the machine is assumed to be finite in length, and the machine states describable 
finitely, and following each other discretely. This I wish to assume whether or not 
parallel processing is involved. Certainly, this class of machines includes Conway ’ s 
Game of Life (see  Gardner 1970 ), which Gandy specifically cites as much of the 
inspiration for his paper.  59   ,    60   ,    61   
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 Let me now return to our basic topic. Church ’ s thesis, in its weakest form, is simply 
that the decidable sets are recursive, or correspondingly for functions and partial 
functions. Thus if we know that a set of natural numbers is finite, say by knowing 
an upper bound to the set, we know that the set is recursive, even though we may 
have in fact no knowledge which numbers are in the set and which are not.  62   

 Thus there is some interest in what might be called an  “ intensional, ”  or alterna-
tively,  “ effective, ”  form of Church ’ s thesis. The term  “ Church ’ s superthesis ”  has also 
been used (I think it is due to Kreisel). The idea is that any intuitive set of instruc-
tions for a computation can effectively be transformed into a computation given in 
one of the conventional formalisms (Post ’ s  “ routine chore ” ). Philosophically, this 
strikes me as interesting for the following reason. The usual formalisms for Church-
Turing computability transform any argument using the intuitive notion of comput-
ability on the natural numbers into one using a chosen formal notion. The intuitive 
argument can disappear as part of the motivation but not of the argument itself, 
which can be formalized in set theory, or indeed in number theory. However, this is 
no longer so for the present case. A significant effectiveness claim is being made, 
but it is hard to see how it can be replaced by a formal claim, statable in set theory. 
Nor is it an intuitionistic claim; it is supposed to be directly intelligible to the clas-
sical mathematician, and may apply to intuitive effectiveness arguments that require 
further work to be valid intuitionistically (perhaps it cannot even be made intuition-
istically valid). Kleene ’ s S m  n  theorem could be considered a partial formalization of 
this claim, but not completely so.  63   

 If we are given a linear computation, in terms of the present formalism, the 
problem is simply writing out the steps explicitly in the formalism of first-order logic. 
The completeness theorem, given that the steps follow from each other, will guar-
antee that the steps follow in a usual formalism for first-order logic.  64   As I already 
mentioned from the pedagogical point of view, this is easier than translating into 
one of the other standard formalisms. 

 The translation is of course more natural if it is done in a natural deduction system 
rather than in a Hilbert-type system. Nevertheless, there remains a further problem, 
also to be stated in terms of the effective form of Church ’ s thesis. For so far, we have 
shown only that each step of a (discrete) linear computation will follow from its 
predecessor and the appropriate instructions. However, we have not shown that a 
formalized deduction will not need irrelevant steps in between the formalized intui-
tive steps, steps that would not have been used in the intuitive argument. Here 
 Prawitz (1965)  is a monograph that would seem to be specifically relevant, since it 
shows how to eliminate unnecessary steps in a natural deduction argument.  65   ( Fine 
1985  may also be relevant.) 

 Although I am trying as much as possible to appeal to actual theorems, in this 
case to show that the computation can be formalized without unnecessary steps not 
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to be found in the intuitive argument, I certainly cannot claim to have thought this 
aspect of the matter through. The work of  Prawitz (1965)  may not always be the 
right thing to cite because the intuitive computation being formalized may itself 
contain unnecessary steps that would have been eliminated by a clever researcher. 
Or, perhaps, one is dealing with a procedure that perversely goes about things in a 
roundabout way. As in other cases of translating recursion theoretic arguments into 
a formalism, but here more basically as a special case of the formalization of math-
ematical arguments, it may be that we should best appeal to practical experience, 
antedating G ö del ’ s completeness theorem, let alone the more sophisticated work 
just mentioned. That in practice such arguments can be so formalized already goes 
back to the early work of Frege, Russell, et al., in formalizing mathematical argu-
ments. Today this would be most naturally done in a natural deduction system. But 
the steps in the formalization would by definition mirror those in the informal argu-
ment. Nevertheless, it would be the G ö del completeness theorem that guarantees 
that there is not some intuitively valid argument not formalizable in the usual 
formalisms. 

 4.5   Conclusion 

 How far does this paper go toward satisfying the expressed desire of some people 
(including my earlier self) for a proof of Church ’ s thesis? The basic idea, assuming 
a set of intuitively evident axioms for computability, is most explicitly given in two 
contemporary papers, several by Sieg (see  Sieg 2008 , and other writings), and  Der-
showitz and Gurevich (2008) . 

 Arguably, the present argument, which does not give a particular axiomatization,  66   
but does simply propose a new characterization of computability, only reduces one 
unproved hypothesis to another one, namely, that the statements in mathematical 
arguments can be described in first-order systems. It then points out that the formal 
characterization of computability can be derived from the G ö del completeness 
theorem (in fact, that the formal characterization might well be given directly in 
terms of first-order formalizability). 

 However, surely something is achieved here. Even the form in which I have just 
stated it, reducing one thesis to another one, is a fact worth noting. And various 
consequences of this fact have been noted above. But also, we can state a theorem 
restricted to algorithms whose steps can be stated in first-order logic, and the special 
case of the G ö del completeness theorem can be called the  “ first-order algorithm 
theorem. ”  I took this term to be fundamental in earlier versions of this paper. First-
order algorithms happen to include all known algorithms, whether done by human 
or machine. 
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94 Saul A. Kripke

 Some of the authors I have discussed also let their results depend on the primacy 
of computations whose steps are statable in first-order logic. Although in its discus-
sion of his machines,  Gandy (1980)  makes the development entirely independent of 
any reference to first-order logic, in its discussion of G ö del ’ s Theorem IX (as quoted 
above),  Gandy (1988)  does not question that the algorithm  α  in question should be 
formalizable (statable) in some suitable axiomatizable extension of the basic system 
 P  (or whatever), perhaps with new predicates. On this basis, I have argued that his 
conclusion about Theorem IX ought to have been stronger. More basically, the 
highly ambitious paper by Dershowitz and Gurevich, giving an axiomatization 
leading to a proof of Church ’ s thesis that they think is more basic and general than 
earlier ones (such as are explicit in Sieg and implicit in Gandy et al.), makes a fun-
damental appeal to the notion of an arbitrary first-order structure. They write:  “ The 
justification for postulating that structures or algebras are appropriate for capturing 
algorithmic states is the enormous experience of mathematicians who have faith-
fully and transparently presented every kind of static mathematical reality as a 
first-order structure ”  ( Dershowitz and Gurevich 2008 , 317). They rightly state (and 
see my corresponding discussion above) that their notion of structure is more 
general than Gandy ’ s idea of a machine as represented as a hereditary finite set, 
and mention numerous other computing languages, etc. So they appeal to the same 
mathematical experience that I do.  67   

 So, to restate my central thesis: computation is a special form of deduction. If we 
restrict ourselves to algorithms whose instructions and steps can be stated in a first-
order language (first-order algorithms), and these include all algorithms currently 
known, the Church-Turing characterization of the class of computable functions can 
be represented as a special corollary of the G ö del completeness theorem.  68,69     

 Notes 

 1.   The present paper is an edited transcript of a talk delivered at the 21st International Workshop on 
the History and Philosophy of Science,  “ The Origins and Nature of Computation, ”  held in Tel Aviv and 
Jerusalem, Israel, on June 12 – 15, 2006. The fact that this is a transcript of a paper delivered orally, rather 
than written, accounts for a certain amount of conversational tone. A version of this lecture was first 
given in August 1998 at the Association for Symbolic Logic in conjunction with the International Con-
gress of Mathematicians, Humboldt University, Berlin, Germany. 
 2.   See the explicit statement on 318:  “ While we cannot prove Church ’ s thesis, since its role is to 
delimit precisely an hitherto vaguely conceived totality, we require evidence that it cannot conflict 
with the intuitive notion which it is supposed to complete. ”  Kleene ’ s section 62 is a summary of the 
evidence. Much of it is presented in detail in other sections. For another statement of the conventional 
view, see, for example,  Cutland (1980) . He says:  “ Note immediately that this thesis [Church ’ s thesis] is 
not a  theorem  which is susceptible to mathematical proof; it has the status of a  claim  or  belief  which 
must be substantiated by evidence ”  (67). Cutland follows this statement with a brief survey of the 
evidence. 
 3.    Dershowitz and Gurevich (2008 , 305), who quote Shoenfield ’ s later statement, also refer to a letter 
from Church to Kleene, quoted by  Davis (1982 , 9). This letter, dated November 29, 1935, does quote 
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G ö del as suggesting  “ that it might be possible, in terms of effective calculability as an undefined notion, 
to state a set of axioms which would embody the generally accepted properties of this notion, and to do 
something on that basis ”  ( Davis 1982 , 9). This would indeed be a striking anticipation at a very early 
date, by the greatest logician of all time, of the later writers I have referred to. However, the full context 
quoted makes this anticipation a bit weaker. He was fending off a challenge from Church to give a 
mathematically defined class of effectively computable functions that he (Church) could not prove to be 
 λ -definable. Certainly, he didn ’ t publish this remark. 

 Nevertheless, by the time my lecture was given in Israel perhaps the number of authors who agree 
with my view was great enough that I shouldn ’ t have referred to the opposite idea (that no mathemati-
cal proof of Church ’ s thesis could possibly be given) as the  “ conventional view. ”  I should add that both 
 Soare (1996)  and  Gandy (1980 ,  1988 ) think that Turing (1936 – 37) already gave a mathematical proof 
that any function calculable by a human being in a routine way was Turing computable, as opposed to 
simply a convincing argument for this thesis. That Turing himself seems to have held the second and 
more modest view is argued in my main text. (All future page references to Turing 1936 – 37 are to the 
1965 reprint.) 
 4.   In my (1996) manuscript  Elementary Recursion Theory and Its Applications to Formal Systems , I 
express my agreement with the view of Shoenfield (1993) and Harvey Friedman that the equation of 
mathematical recursiveness and intuitive computability is a meaningful mathematical problem. I even 
give a proof in one direction that the mathematical concept implies the intuitive one (see next note). 
However, I state that  “ while this [a rigorous proof that the intuitive and the mathematical concept are 
the same] is in principle possible, it has not yet been done (and it seems to be a very difficult task) ”  (14). 
See also the references in  Dershowitz and Gurevich (2008 , 339), quoting me to that effect and Richard 
Shore in agreement with me. However, Friedman is quoted as more hopeful that reasonably soon 
Church ’ s thesis will be proved in the appropriate sense (using weak and intuitive axioms for 
computation). 
 5.   I give my own proof of this (easy) half in my manuscript  Kripke (1996 , 14 – 15). Actually, what I proved 
is that every recursively enumerable relation (or set) is semi-computable (i.e., has a proof procedure). I 
then characterized a relation as computable when it and its complement are semi-computable. Note my 
further comments that this is a mathematical proof that cannot be formalized in ZF set theory, so that 
if the statement that  “ all mathematics can be formalized in set theory ”  is taken too strongly, it is not so. 
The view is sometimes taken that the problem ought to be regarded as one in intuitionistic mathematics. 
This is not the point of view taken in this version of the argument. Indeed, intuitionistically the charac-
terization of a decidable relation as one such that it and its complement are semi-computable is not 
obvious, and requires supplementary argument. See also my stipulative exclusion of using intuitionistic 
ideas in the notion of computation in the text below. 
 6.   In his famous paper,  G ö del (1931) , G ö del actually calls them  “ the recursive functions. ”  The term 
 “ primitive recursive ”  stems from  Kleene (1936) . See also Kleene (1981, 53). 
 7.   I find that  Barendregt (1997 , 187) also gives the same argument I have just given about the Ackermann 
function. In fairness to Barendregt, and contrary to what I argue immediately above, his position is that, 
like the thesis on primitive recursiveness, Church ’ s thesis could be disproved, but it cannot be proved. 
Our failure to find a similar disproof is thought to be empirical evidence that the thesis is true. On the 
other hand,  Dershowitz and Gurevich (2008 , 304) quote Barendregt ’ s argument in the context of a paper 
whose very title,  “ A Natural Axiomatization of Computability and Proof of Church ’ s Thesis, ”  indicates 
their belief that Church ’ s thesis can be proved. 

 In further fairness to historical accuracy, I should add that giving a counterexample to an identifi cation 
of the primitive recursive functions with the effectively calculable functions does not appear to have 
been Ackermann ’ s main goal in the paper. 

 Today, independently of Ackermann ’ s work, it would be obvious to us that primitive recursion could 
not exhaust intuitive effective calculability. We can effectively enumerate all directions for computing 
primitive recursive functions, and then use a diagonal argument to defi ne a calculable function that 
cannot be primitive recursive. On the basis of Kleene ’ s discussion of the matter I credit this argument 
as originally given by  P é ter (1935) . Kleene also states that P é ter in the same paper (and also  Robinson 
1948 ) simplify Ackermann ’ s original example (see  Kleene 1952 , 271 – 272). 

 I might make one remark about the argument I have given. Certainly the existence of a measurable 
cardinal could be disproved in ZF set theory, and in fact this has been attempted. However, the existence 
of a measurable (and other large cardinals) cannot be proved in ZF set theory, and I do not detect any 
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96 Saul A. Kripke

particular interest in fi nding evident seeming extra axioms that might favor their existence. Advocates 
of large cardinals seem rather to favor them because of their fecundity in proving allegedly plausible 
consequences. Note that it is still true that, if one believes in conventional ZF set theory, the existence 
of a measurable cardinal is of course a defi nite mathematical question. 
 8.   I should mention that  Soare (1996)  distinguishes between Church ’ s thesis or argument, which he 
regards as defective, and Turing ’ s thesis or argument as intensionally different, and only the latter as 
really convincing. Following conventional terminology, I am not worrying about this distinction here, 
since the  “ theses ”  have been proved equivalent. 
 9.   Soare also quotes Davis as telling him that G ö del reacted sharply to the term  “ recursion theory ”  for 
the subject, and that the term should be  “ used by reference to the kind of work R ó zsa P é ter did ”  
(307 – 308). Nevertheless, there are places in print in the G ö del papers themselves where G ö del uses such 
terms as  “ general recursiveness (or Turing ’ s computability) ”  ( G ö del 1990 , 150) and  “ a non-recursive 
number theoretic function ”  ( G ö del 1990 , 306). I don ’ t know if this shows very much. 

 Soare ’ s proposal has been generally adopted, so that terms such as  “ recursively enumerable ”  have 
given way to  “ computably enumerable. ”  Agreement with Soare has not been unanimous among writers 
in the subject. I have been told that Martin Davis sees little reason for the change. Slaman, quoted in 
the text, also dissents from the view. 
 10.   I heard Slaman advocate the view that the subject should be a theory of defi nability as much as 
computability in his G ö del lecture at the 2001 meeting of the Association for Symbolic Logic. The title 
of the lecture is  “ Recursion Theory. ”  

 In my own manuscript  Kripke (1996),  I independently had taken a defi nability approach to the subject 
myself. In fairness to Soare, he states  “ other concepts [as opposed to computability] (recursion, defi n-
ability) are very important but not at the center ”  ( Soare 1996 , 314), thus explicitly rejecting the view of 
the subject taken by Slaman and myself. 

 Looking at this matter again now, I fi nd that Soare may well be correct as to what has become the 
most important concept. However, like Slaman, I fi nd defi nability a very important concept (as Soare 
acknowledges) and important for a good development of the subject and for its applicability to formal 
systems. 
 11.   Even in much more recent (late-twentieth-century) dictionaries I happen to possess, the definition 
of a  “ computer ”  as such a person is still recognized as one possible meaning. It is actually hard to imagine 
that it could be otherwise. 
 12.   In these papers the authors propose to adopt the spelling  “ computor ”  for Turing ’ s notion of a human 
being making a computation, so as to avoid confusion with the contemporary notion of a  “ computer ”  as 
a machine. It is even proposed to take Turing ’ s paper as giving a characterization of the  “ computorable ”  
numbers (functions), again to avoid confusion. 

  Sieg (1994 , 71) quotes Wittgenstein:  “ Turing ’ s  ‘ Machines ’ . These machines are  humans  who calculate ”  
( Wittgenstein 1980 ,  §  1096). The quotation, though insightful, is somewhat confusingly put. Better would 
have been: These machines are Turing ’ s mechanical model of  humans  who calculate. 
 13.   See  Shagrir (2002) , who argues that whatever the historical situation about Turing ’ s original analysis 
may be,  “ Today computer scientists view effective computability in terms of fi nite machine computation ”  
(221, abstract). I myself recall the lecture notes from one logician who stated the evidence for Turing ’ s 
thesis in terms of contemporary computing machines. He emphasized that every high-speed computer 
(idealized appropriately in infi nite capacity and in terms of its programming language) is in effect a 
universal Turing machine. Shagrir gives various other examples from contemporary writings. All or most 
seem to be written independently of Gandy ’ s worries about the distinction between Turing ’ s original 
analysis and goals and the machine formulation of the problem. 

 Yet another infl uence is Turing ’ s own historical role in the development of high-speed computing 
devices. 
 14.    Shagrir (2006)  refers to both argument I and argument III. 
 15.   To understand Gandy, it ought to be explained that  “ working in a routine way ”  is meant to exclude 
G ö del ’ s objection to Turing ’ s (first) argument, based on the notion that the mind might provide creative 
insights enabling it to go beyond Turing ’ s analysis. He refers to  Wang (1974 , 325 – 26); I will discuss this 
objection in the main text below. 
 16.   Although Soare is right to state that a rigorous mathematical argument need not be presented in a 
formal system, once one sees the desirability of an informal axiomatization, in the spirit of other con-
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temporary axiomatizations, the rest would only be a routine matter of formalization, though it is not 
necessary. 
 17.   This discussion raises a fascinating issue in the history and philosophy of mathematics and deserves 
considerable discussion that cannot be made here. 

 But to one part of the discussion I would like to make one correction (as I see it). Everyone relies on 
Kline:  “ Up to about 1650 no one believed that the length of a curve could equal exactly the length of a 
line. In fact, in the second book of  La Geometrie , Descartes says the relation between curved lines and 
straight lines is not nor ever can be known ”  ( Kline 1972 , 354; quoted by  Soare 1996 , 297). But all this 
strikes me as very unclear. Descartes does say this. But to say that the relation between curved and 
straight lines can never be known is not clearly to be construed as claiming that the length of a curve 
and that of a line must be different, only that they are forever undecided. One might as well take a state-
ment that the relation between the power of the continuum and  ℵ  1  will never be known as asserting 
categorically that they are different. (Greater study of Descartes than I have made is needed, but I would 
presume that Descartes was uncertain whether the geometric straight line is complete. Otherwise, one 
would have to assume that he was unaware that the circumference of a circle can be arbitrarily approxi-
mated by inscribed polygons, and of the way  π  is calculated.) In addition, Kline presents no evidence 
that until 1650 everyone assumed that Descartes was right. So here I think Kline has gone considerably 
beyond his stated evidence. 

 As again Soare ’ s proposal that Turing computability be taken as a defi nition of computability:  “ One 
senior logician objected to this proposed defi nition because he said we should view the Church-Turing 
Thesis as certainly correct, but as  ‘ a one of a kind, without any true analogue in mathematics. I think 
we recursion theorists [ sic ; note the terminology] should be proud of this, and not (as you seem to 
suggest) replace it by a change of our defi nitions. ’  There is no reason why we cannot use Turing ’ s 
Thesis as a defi nition of computability and still maintain awe and pride at a fundamental discovery ”  
( Soare 1996 , 296). But Soare regards Turing ’ s argument I as the proof of a  theorem . Does he give 
any example where a  theorem  (as opposed to a thesis or analysis  simpliciter ) became a defi nition? 
(He proposes other  “ theses ”  that, according to him, became defi nitions.) 
 18.   That Turing says this is pointed out by  Sieg (1994 , 97). Paradoxically, this is the very same author who 
has done more than anyone else to justify the later claims that in his first argument Turing proved a 
theorem, by giving an axiomatic development of his work (see  Sieg 2008 ). 
 19.   Nevertheless, it is of course possible that Turing was excessively modest in his claims, and that he 
had, in effect, proved a theorem. 

 Moreover, I myself argue below that G ö del could have regarded his Theorem IX ( G ö del 1931 ) as a 
proof of the undecidability of the  Entscheidungsproblem , but did not do so. For this case, see the discus-
sion below. 
 20.   To put the matter more precisely, Turing ’ s second argument presupposes some viewpoint such as the 
one taken in the present paper. All references to Turing ’ s paper are to the 1965 reprint. See also the 
exposition, history, and analysis by  Sieg (1997) . 

 In addition to crediting Turing and Church themselves, I should add that I have heard reports to the 
effect that Martin Davis gave some consideration to a justifi cation of Church ’ s thesis in terms of fi rst-
order logic some time ago. At the Berlin conference (see note 1, this paper) Ronald Jensen told me that 
in lectures he had always emphasized formalizability in fi rst-order logic, but had not at that time believed 
there was a theorem to be proved. 
 21.   Martin Davis originated the term  “ Hilbert ’ s thesis ” ; see  Barwise (1977 , 41). Davis ’ s formulation of 
Hilbert ’ s thesis, as stated by Barwise, is that  “ the informal notion of  provable  used in mathematics is 
made precise by the formal notion  provable in fi rst-order logic  ”  ( Barwise 1977 , 41). The version stated 
here, however, is weaker. Rather than referring to provability, it is simply that any mathematical  statement  
can be formulated in a fi rst-order language. Thus, it is about statability, rather than provability. For the 
purposes of the present paper, it could be restricted to steps of a computation. 

 Very possibly the weaker thesis about statability might have originally been intended. Certainly 
Hilbert and Ackermann ’ s famous textbook (Hilbert and  Ackermann 1928 ) still regards the completeness 
of conventional predicate logic as an open problem, unaware of the signifi cance of the work already done 
in that direction. Had G ö del not solved the problem in the affi rmative a stronger formalism would have 
been necessary, or conceivably no complete system would have been possible. It is true, however, that 
Hilbert ’ s program for interpreting proofs with  ε -symbols presupposed a predicate calculus of the usual 
form. There was of course  “ heuristic ”  evidence that such a system was adequate, given the experience 
since Frege, Whitehead and Russell, and others. 
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98 Saul A. Kripke

 Note also that Hilbert and Ackermann do present the  “ restricted calculus, ”  as they call it, as a frag-
ment of the second-order calculus, and ultimately of the logic of order  ω . However, they seem to identify 
even the second-order calculus with set theory, and mention the paradoxes. Little depends on these exact 
historical points. 
 22.   Throughout this paper I will mean first-order logic with identity when I refer to first-order logic. 
Other qualifications and explanations will be given below in the text. 
 23.   But of course not both. A proper computation does not give inconsistent instructions. 
 24.   But the fault may be mine in concentration rather than Turing ’ s in exposition. However, see also the 
correction to the treatment of the unsolvability of the  Entscheidungsproblem  in Turing (1936 – 37, 152 – 153), 
which Turing attributes to Bernays. 
 25.   According to the account in  Sieg (1997)  — and, of course, see also Church (1936a) — Church originally 
thought (in what has been called his  “ step by step ”  argument) that if a formal system did not have 
recursive rules, they would have to be unrecognizably complicated, and it would be doubtful that they 
could be effective. He also emphasized that his requirements were satisfied by all existing systems of 
symbolic logic. 

 All charges of circularity against Church would disappear if one supplemented his argument with a 
recognition of the primacy of fi rst-order logic (or at least in the metatheory of the formal system 
described), and G ö del ’ s completeness theorem for an appropriate set of rules for fi rst-order logic. 
Church ’ s famous paper (1936b) can be regarded as an implicit recognition of this primacy. And his argu-
ment is certainly that computation is a form of deduction within a system, very much in the spirit of the 
present paper. 
 26.   And for sets, similarly for relations and functions. Also, one can regard a set as admitting a proof 
procedure (or semi-computable) if such a procedure allows us to prove membership in the set if and 
only if it holds, but says nothing about nonmembership (the analog of what is classically called recursive 
enumerability). It is of course a classical result of recursion theory (computability theory) that this is a 
weaker notion than decidability. 
 27.   See  Cutland (1980) . He says:  “ For the practiced student there is the additional evidence of his own 
experience in translating informal algorithms into formal counterparts. For the beginner, our use of 
Church ’ s thesis in subsequent chapters may call on his willingness to place confidence in the ability of 
others until self confidence is developed ”  (70). The trouble is that someone who learns computability 
theory from a text such as Cutland ’ s probably will never have developed such confidence by himself and 
will forever rely on others. One who learns the basics from a book such as  Kleene (1952)  may get lost 
in the formalism. 
 28.   Some basic theorems, in particular the enumeration theorem for recursively enumerable sets, may 
be simpler using such a formalism, or one of the traditional formalisms, than the proposed formalism 
based on logic. However, the logical formalism will have its own version of the universal Turing machine 
in a formulation in first-order logic of all first-order formalisms. See the text below. 
 29.   Such coding is not really necessary. The states could be directly represented in the first-order lan-
guage. No doubt the natural numbers, or  n -tuples of them, would be natural for representing the indi-
vidual cells of the machine. 
 30.   The Herbrand-G ö del-Kleene equation – calculus formalism somewhat resembles such a narrow 
system, but is differently motivated, as stated. 
 31.   Of course, many or most of the conventional systems of mathematical logic have infinitely many 
axioms above those of logic itself; for example, the usual first-order arithmetic, or the usual formalization 
of ZF set theory. The philosophical difficulties involved in our ability to understand these systems are 
interestingly discussed in Martin ’ s paper  “ Sets versus Classes ”  (1974), which has circulated but is 
unpublished. 
 32.   Another interesting and later history and analysis is given by  Sieg (1994) , and has been used above. 
 33.   For the full quotation from von Neumann, which is very interesting, see  Gandy (1988 , 61 – 62). Outside 
the Hilbert school, Gandy discusses Brouwer ’ s skepticism as to the decidability of all mathematical 
problems and Post ’ s claim to have early shown the existence of a recursively enumerable set that is not 
recursive (61). Gandy mentions (62) that in fact mechanizability in principle would not necessarily put 
mathematics at an end. For example, some problems in elementary geometry that in principle might be 
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solved by Tarski ’ s decision procedure still are unsolved and require conventional mathematical methods 
in practice. 
 34.   Gandy writes:  “ Hardy might have read von Neumann ’ s paper, or have heard of it from F. P. Ramsey; 
in his lecture he discusses Hilbert ’ s ideas at length, but he does not refer to von Neumann ”  ( Gandy 1988 , 
63). Actually, Gandy is mistaken on this factual point. Hardy emphasizes a paper by von Neumann, who 
is explicitly named as  “ a pupil of Hilbert, ”  whose statement he finds  “ sharper and more sympathetic than 
Hilbert ’ s own ”  ( Hardy 1929 , 14; see also the postscript, 25). Gandy rightly says,  “ because he [Hardy] wrote 
the text for a lecture he gives no precise references ”  (62). Although Hardy does not say which paper by 
von Neumann he has read, it seems to me pretty clear from his statement that it is a presentation of 
Hilbert ’ s point of view and program, as well as the relevant dates, that it is  von Neumann (1927) , the 
very paper quoted by Gandy. 
 35.   It is especially clear if the steps are given deterministically, as described above. But even if they are 
given nondeterministically, the result follows. 
 36.   We assume some G ö del numbering of the formulae of the predicate calculus. 
 37.   For this system, it would be simplest to replace validity by provability. But it could still be proved 
that any  Π  0  1  sentence is equivalent to the consistency of a formula of first-order logic. Actually, and con-
trary to any impression given by Gandy ’ s discussion, provability of the equivalence in the underlying 
system is not really needed. One could add axioms asserting the equivalence in each case. Notice also 
that it is not really relevant whether one can prove that the procedure always gives an answer. Gandy ’ s 
other alternative that  “ it cannot be proved in  Σ  that its answer is always correct ”  (63) is answered in my 
text simply by taking this correctness as an axiom. 
 38.    G ö del 1931 , 176ff. 
 39.    G ö del 1936 . 
 40.   The decidable case for satisfiability is statement in prenex form with just two consecutive existential 
quantifiers in the prefix, surrounded on both sides by strings of universal quantifiers. He goes on to show 
that if three consecutive existential quantifiers are allowed, a decision procedure would allow one for 
the predicate calculus as a whole (in modern terminology, that this is a reduction class for satisfiability). 
He does not state that he has shown in 1931 that such a decision procedure is impossible (though he 
may well have believed that such a procedure is in fact impossible, and even implicitly implied this belief). 
 41.   However, of course G ö del could still quite consistently regard the  Entscheidungsproblem  and other 
such questions about effective calculability, the definition of formal system, and so on, as only decided 
by Turing ’ s work. This is so even though after it had been done (after the fact, so to speak) it can be seen 
that the result follows from his Theorem IX. 
 42.   At least, given G ö del ’ s own account of his philosophical orientation. 

 Notice that even Gandy ’ s late characterization of the consequences of G ö del ’ s theorem IX is, in my 
opinion, still too weak. 
 43.   G ö del refers to Turing (1936 – 37, 136). 
 44.   This is the argument that, as we saw above in note 15, leads Gandy to qualify his statement of what 
Turing achieved in analyzing human computation. The interested reader ought to look at the entire 
argument, condensed here. The argument has attracted some amount of commentary, not entirely known 
to the present writer. See both the commentary in  G ö del (1990)  and by Sieg in the present volume (not 
known to me at the time of writing). 
 45.   G ö del ’ s argument seems to me to differ little in spirit from Kalmar ’ s argument against Church ’ s 
thesis. Kalmar argues ( 1959 ) in effect that every purely existential predicate (defining a recursively 
enumerable predicate) ought to be decidable as follows: for a positive solution, search systematically for 
a numerical instance for the existential quantifier. Simultaneously, for a negative solution, look for a 
proof by  “ arbitrary correct means ”  of the impossibility of such an instance. Is this an algorithm or a 
procedure? If it were, we should have used it to decide Fermat ’ s last theorem, and should still try it on 
the Riemann hypothesis and the Goldbach conjecture. In fact, no doubt some people are trying this 
strategy, but they hardly think of it as an algorithmic procedure. Much less should one try such an  “ algo-
rithm ”  on the halting problem or the  Entscheidungsproblem . 
 46.   Kleene ’ s remarks give the impression that it is important that directions be communicated or com-
municable from one mathematician to another. But this seems to me to be inessential. 
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 47.   Davis writes:  “ We are not concerned here with attempts to distinguish  ‘ mechanical procedures ’  (to 
which Church ’ s thesis is held to apply) from a possible broader class of  ‘ effective procedures ”  ( Davis 
1982 , 22). Davis gives two authors as examples of what he has in mind, and, as he indicates, there are 
others. See also Gandy ’ s claim, quoted above, that Turing ’ s analysis applies to  “ a human being working 
in a routine way. ”  
 48.   Moreover, Kreisel did not believe that it was a necessary condition for the acceptability of an intu-
itionistic system that it have the numerical instantiation property (even though standard such systems 
do in fact have it). For all that is required for the intuitionistic acceptability of a proof of an existential 
statement, even formalized in a system, is that from this proof one could obtain an intuitionistic proof 
of an instance, not that the proof could be formalized in the same system. 

 In conversation with me when he was wondering about this issue, he told me he convinced himself 
that for relevant intuitionistic systems, a cut elimination argument gives the  “ right ”  instance. 

 I have hardly exhausted the many discussions of Church ’ s thesis, considered as a problem for the 
intuitionistic notion of number theoretic function, both in Kreisel ’ s writings and in many others. The issue 
is simply excluded in this paper, and the discussion in the text gives one signifi cant example. 
 49.   What do I mean by  “ mathematical calculation by a machine ” ? I am not talking about  “ whether a 
machine can think. ”  What I mean is that I am considering only machine programs whose successive steps 
follow from each other mathematically. 
 50.    Shagrir (2002 , 235) suggests two such interpretations, and attributes one of them to Sieg. 
 51.   In fact, he gives several conditions to define his class of machines, and argues that dropping any one 
of them will allow the machine to exercise  “ free will. ”  
 52.   For example,  Soare (1996)  and  Sieg (2008) . 
 53.   I mean, for example, Newtonian physics. 
 54.   For a quotation from Russell about this possibility see  Copeland and Shagrir (2007) , at the beginning 
of section 6. They then go on to explain how one can use what I call  “ Zenonian machines ”  to solve the 
halting problem. 

 I confess that at times past I have been sympathetic to an assumption that Zenonian calculation could 
be regarded as a far-fetched possibility, and that if time is fi nite in extent, the question of what functions 
are empirically computable would be meaningless. 
 55.   When I discussed this issue in Berlin (1998; see note 1), I assumed that these were universal physical 
constants. I had seen this assumption in my own reading, and had already explicitly discussed the issue 
with an eminent physicist, including the question whether anything is known about the mathematical 
properties of these constants, and in particular, whether they were Turing computable. This discussion 
confi rmed what I have to say in the text. 

 However, I have now heard that some physicists speculate that (say) the electron-proton mass ratio 
may be subject to change over time. Then what I have to say in the text would need reformulation, though 
I don ’ t think it would be invalidated. I do not bother with the question further, since the point is that 
empirical assumptions cannot guarantee that actual machines compute Turing-computable functions, and 
that in fact the situation is even worse. 
 56.   Brouwer observed, in effect, that even if we can calculate a real number with an arbitrary degree of 
precision, this does not mean that we can calculate all its decimal places, because a number representable 
with a finite decimal, not ending in 0, followed by an infinite string of 0s, can also be represented by a 
finite decimal with the next-lower last place, followed by a string of 9s. But on the assumptions we have 
just made, this possibility (and problem) is excluded (see  Brouwer 1921 ). Note that Turing, whose original 
work was on computable  numbers  rather than computable functions, felt obligated in the published cor-
rection to the original paper to worry about this problem (ignored in the original paper). He refers 
explicitly to Brouwer (see Turing 1936 – 37, 153 – 154). I could have stated the present observations using 
Brouwerian approximations rather than decimals. 
 57.   My editors have pointed out to me that similar thoughts were entertained by Kreisel and by Marian 
Pour-El and Ian Richards, who asked  “ Can one predict theoretically   on the basis of some current physical 
theory — e.g. classical mechanics or quantum mechanics — the existence of a physical constant which is 
not a recursive real? ”  (Pour-El and Richards 1979, 63; Kreisel 1974, 11). Copeland speculated that the 
 “ magnitude of some physical quantity might conceivably be exactly  τ  units ” , where  τ  is a real number 
that is not Turing computable (Copeland 2000, 18); and computer scientist Hava Siegelmann notes that, 

1 I?E G> 0 6 =D ?M E C-1 I M <CECMP : CGA >?E 1B =B G> 0?P G> C- 5: ? 9 ? M 3< D 1?GM E
BMMI ?< D=?GM E I J ? M = EC< = GPA= >?M CE =MC G.> =52,

1 ? M?> = GPA= G   

1
IP

CA
BM

5:
?

/
EE

CA
BM

?
?

?>



The Church-Turing “Thesis” as a Special Corollary 101

if there are uncomputable real constants in nature, then the  “ fact that the constants are not known to us 
or cannot even be measured is irrelevant for the true evolution of the system ”  (Siegelmann 2003, 110).  
 58.   Much more is at issue than I can discuss here. But I should add that I am not myself in sympathy 
with the trend, prominent in some analytical philosophers, to say that mathematics ought to be justified 
(and can only by justified) by its applicability to physics. In fact, if we take physics at any one time, 
including probably today, the mathematics needed to apply to physics would include some  “ mathematics ”  
that is not valid. In addition, I think that mathematics is an enterprise justified in itself, not in terms of 
its use in a particular other discipline. This is not the place to elaborate. 
 59.   My attitude may be close to that of  Dershowitz and Gurevich (2008) . 
 60.   All the papers quoted above that question Gandy ’ s argument attempt to give (highly speculative) 
examples of empirically possible machines that go beyond Turing computability. Without knowing any-
thing about the subject, except what I could glean from popular accounts, I have wondered whether 
quantum computing, an ongoing project known to be contained in Turing computing, might be an 
example of a hypothetical type of machine not covered by Gandy ’ s theorem, but that might be 
covered by the present approach, or that of  Dershowitz and Gurevich (2008) . Gandy ’ s theorem 
assumes a locality condition. Even though the Einstein-Podolsky-Rosen (EPR) paradox is accepted 
not to contradict special relativity, correlations at arbitrary distances do appear to be an essential part 
of quantum computing, using EPR. Thus I am not sure that Gandy ’ s invocation of special relativity 
really does show that his theorem covers quantum computing. But to repeat, I am hardly really famil-
iar with the subject. 
 61.   Gandy worries that machines obeying Newtonian physics may violate his theorem, since he assumes 
special relativity, as just mentioned. But there would be no problem if each state is finitely describable 
in conventional first-order logic, and the operation of the machine is deterministic, so that each state 
follows from the previous state, and the laws governing the operation of the machine. 
 62.   In  Church (1956) , section 46, Church himself lists several decidable special cases of the  Entscheid-
ungsproblem , largely due to others. Later, in the errata (377), Church mentions that one of his cases (case 
X, 257) is in fact finite (or essentially so, except for such things as changes of bound variables). Hence 
of course it is decidable, but Church says that there is still some interest in giving an actual decision 
procedure. 
 63.   Given what we know today, there are further problems with this example, but I choose to leave the 
matter obscure. 
 64.   Or rather, more exactly, that given the set of basic instructions, the conditional from any one step to 
the following step will follow in first-order logic. 
 65.   However, perhaps there may be a problem in the use of such a result. After all, the original intuitive 
computation may itself contain unnecessary steps, that could have been, but were not in fact, eliminated. 
Arguably, a true translation of the argument should preserve this. 
 66.   Though, I think I might have been able to put the matter that way. But I do not wish to obscure the 
simplicity of the basic point. 
 67.   They write:  “ An alternative approach to proving Church ’ s Thesis has been suggested by Kripke, based 
on  ‘ Hilbert ’ s Thesis ’  that  ‘ any mathematical argument [ . . . ] can be formalized in some first-order lan-
guage, ’  and — in particular — arguments about the effects of applying the instructions of an algorithm can 
be so formalized ”  ( Dershowitz and Gurevich 2008 , 340). (They mean  “ alternative ”  to various approaches, 
such as Turing ’ s first argument, Kolmorogov, Gandy, and others whom they cite.) 

 Remember that my argument about formalizability was, as much as possible, based on the statability 
of the steps of the argument in a fi rst-order system, and relied on the G ö del completeness theorem for 
the formalizability in the stronger sense of provability in a formal system. I think I am in agreement with 
 Dershowitz and Gurevich (2008)  in this respect. But I am emphasizing deductive argument over com-
puter models. 
 68.   For further reading, see G ö del 1930, 1934, 2003; Kleene 1987. 
 69.   I would like to thank the transcriber, whose identity I don ’ t know, the editors of this volume, Jeff 
Buechner and Gary Ostertag for revising the original transcription, and especially Romina Padr ó  for her 
help in producing the present version. This paper has been completed with support from the Saul A. 
Kripke Center at The Graduate Center of the City University of New York.   
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