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TRANSFINITE RECURSION, CONSTRUCTIBLE SETS, AND

ANATOGUES OF CARDINALS

Saul Kripke
Part of thig article was written up by A. R. D. Mathias

We are interested in generalizing classical recursion theory
(on w) to recursion on the ordinals less than some 'admissible'
ordinal «. ('Admissible’ will be defined later.) Special cages
of the present theory were discovered by Takeuti, Machover, and
Kreisel (building on work by Mostowski et al.); their coworkers
were Kino, Lévy and Sacks respectively. The present basgic
theory was independently rediscovered by Platek. We do not claim
this theory to be the most geheral type of recursion - only that

it is a 'solid' and well established generalization.

Let & be any ordinal. (:!Cardinal' will always mean

infinite cardinal; 'ordinal' will mean ordinal, finite, or infinite).
We can consider a being who is given all the ordinals < €&, in their
natural order, as primitive objects. For us, the natural numbers

are given as surveyable objects; computations are well-ordered

finite [< w] sequences of operations. (So for us, Q = w.) The
being we have in mind can perform any well-ordered sequence of
operations of order-type < @ in a finite time. In particular, and
crucially, the beihg, given any ordinal n < &, can survey the

ordinals < n to see if a given property holds on some ordinal < n
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or fails on all of them. (Thus, if O > w, he can decide on the
Goldbach conjecture.) For him such a sunvey is 'finite'. At the
moment, we put no restrictions on what Q may be; 27 and the

first measurable cardinal are equally good.

To formalize this, we set up an equation calculus‘as in
Kleene. We have a denumerable list of funection letters,‘ f,g,h,...,
parentheses, comma, =, a denumerable list of number variables
Xp5%55 0055 and for each ordinal n < &, a numeral n. Variables
and numerals are terms; if tl,...,tn are terms, so is f(tl,o.,,tn)J
where f 1is any function letter. To capture the superbeing's~ability
to search through a proper initial segment of @ and to decide
whether there is any x in that segment such that a certain property
holds, we introduce some new notation. If tl and t2 are terms,
we say (Jx < tl)t2 is a term, provided tl. does -not contain x free.
Intuitively, t, will be a characteristic function of x, tg(x), ty
will denote some ordinal n <@, and (3x < tl)t2 will denote 0 if
fﬁr some m < n, ta(nﬂ = 0, and will denote 1 if for all m < n,

is a term. The only formulae

ty(m) = 1. Note that (3Ix < t)t,

in the equation calculus have the form tl = t2, tl’te' terms. The
bounded existential quantifier applies to terms, not to equations;

if this confuses, think of it as a bounded infinite product.

The language we have set up depending on & will be called
o). If E is a finite system of equations, and b = t2 is an

equation in #AQ), Ethl = t, iff t, = t, follows by one of the
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following rules. (Subscript « is often dropped if fixed by the

context) :
R,) (%) = (%) / t,(n) = t5(7)
R,) tl=t2,t3=5/t~>16=t§,
where ti,tz come from tl’t2 by replacing t3 by n.
RBa) m<n<a tm=0/[(Ix<mt(x)] =0
b) if n<a and for all m<n we have t(m) = 1,
conclude

[(x<n)t(x)] = 1.

For a fixed E, define SO = E, Sx+l = SX U all conclusions
of Rl - R3 with premises in Sx’sy =;iy SX for y a limit ordinal.
El—atl = t, iff (Hx)(tl =ty e 8).

If ¢ 1is a function, whose domain is & and with range cC a,
we say @ 1is CG-recursive if there is a finite system of equations E
and a letter f such that EFd f(m) = n iff o¢(m) = n. Similarly for

Q-partial-recursive, «-r.e. gset, ete.

So far, we have put no condition on <. But in our imaginary
conception of a superbeing, Sx gives a certain measure of the
number of steps required to deduce an equation. Clearly we want the
superbeing to be able to deduce anything he wants in < a steps. So

we say:
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DEFINITION. @ 1is admissible iff for any BE, Sa Sa+l°

This says that Sa is closed under the rules. It readily follows
from admissibility that @ is a limit ordinal and hence that

s, = U Sx’ Thus the definition says that any equation that can be

G X<
derived from E at all can be derived in < @ steps, and demands thisg

for any finite system of equations E.

Another concept is:

DEFINITION. « is recursively regular iff any @-partial-.

recursive function whose domain is a proper initial segment of «

has a range bounded in <.

This concept is not such an obvious intuitively necessary condi-

tion for & to satisfy. But we have:
THEOREM. & 1is admissible iff & is recursively regular.

The basic fact now is: All standard theorems of elementary re-

cursion theory hold for all admissible «@. To prove this, we must code

finite sequences of ordinals by ordinals and then Godel number the
symbols of 4 &) by ordinals. The ordinal pairing function used in the

Godel monograph is adequate for this purpose.

Remarks. One can also, set, as it were, @ = On, and do recursion
on all ordinals. Of course, some of the definitions have to be changed,

50 as to avoid illegitimate uses of proper classes; but, in the
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appropriate sense, On is admissible. (In fact, if considered a
cardinal, it i1s a ‘regular cardinal', and thus a fortiori is a re-

cursively regular ordinal.)

A subset K of O is 0-bounded iff b <o s.t. KCo. K
is Q=metafinite if it is C-bounded and CG-recursive. 'Metafinite’ sets
are the infinitary analogue of finite sets; they represent the sets
which the superbeing can survey as a single presented object. (He
knows an upper bound « for such a set, and can tell which ordinals
are in or out.) We can show that the recursion theory would not
change if we allowed functions to be defined from an Q-metafinite

or even an d=-r.e. set of equations.

We define the system PZF of weak set theory set theory as

follows:

Drop from ZF +the axioms of infinity and power set and the schema
of replacement; add the replacement schema for restricted (Zb in the
sense of Lévy) formulae: i.e, for each ZO formula with parameters;

U, the wif Vx ¢ z Jiy¥(x,y) » () (w = image of z).

The other axioms are empty set, unordered pair, extensionality,

infinite union, and regularity.
THEOREM. The following are equivalent:

i) < 1is admissible;

ii) @ 1is the ordinal of (= the least ordinal not in) a transi-

Dt
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tive model of FZF:
iii) L, F PZF +7V =L (where L = L[0] is as defined on

page III-H-3 of this volume).

Sketch of proof:

i) - ii) We show that L, is amodel of PZF. Gddelize the lan-
guage of Ld by ordinals < Q. Show that under the Godel numbering the
E-relation between two terms in the language of Id’ is G~-recursive; and
that restricted quantifiers over sets correspond to bounded quantifiers
over ordinals. Then every restricted (ZO formula corresponds to an
G-recursive relation under the Godel numbering, and thus ZO- replace-
ment follows from recursive regularity. The other axioms are trivial.

ii — iii) Godel's monograph can be carried out in PZF, to the
extent of defining I, showing that L 1is a model of PZF, and
proving that V =1 holds in L. Model theoretically, if a transitive
M with ordinal « satisfies PZF, Hu satisfies FPZF + V = L.

iii —» i) We said above that in recursion theory on all the ordi-
nals, one can prove that On is an ‘admissible ordinal!'. This proof
can be carried out in PZF. Since admissibility is an absolute
notion, if we are reasoning inside a model Eg of PZF,  the proof

shows that @ iz admissible.

THEOREM. If © is admissible, K C &, then K is Q-metafinite

«— it is in IuJ

Proof. « Clear, since K is (-recursive and K is obviously bounded

- If o = On, one can show in PZF that an -metafinite class

ig a constructible set. For every CG-recursive class is defined by a Al
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formula (see the next theorem), and by restricted ‘Aussonderungs, - Since

the class is bounded, it is a-set. Relativizing tQﬁ-Hl; every- O-

metafinite set is in La° Co bt o e 6 s a0 Cair

THEOREM. Let « Ybe admissible. KC O is O-recursive

(a-r.e.) iff K 1is ordinally definable in L, by a Al(zl} formula.

‘Remark. These theorems are quite independent of the definition
i th
of L; they remain true whether I, means M, (the « level of
the ramified hierarchy of sets), or means F"(! in the sense of the

Godel monograph.

THEOREM. Every cardinal is admissible.

Proof. For regular cardinals, trivial. For singular cardi-
nals, we must use the 'pressing down' argument of the Godel proof of

the consistency of the GCH.

THEOREM. For «& > 0, there are ﬁm admissible ordinals < Ia.

Proof. There are iu models of PZF < Ia, by familiar
arguments.
We now give some more examples of admissible ordinals.

We recall the system of second order arithmetic defined in
Shoenfield's lectures. We write the levels of this hierarchy with

superscript '1', as Zi, Ai to avoid confusion with the set-
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theoretical hierarchy used above. Remembering that each countable
ordinal can be coded as a set of integers (as on page III-H-15) we

may make the following definition: Bn =pF the least ordinal not
given by a Ai code. For each n ¢ w, Bﬂ is admigsible. A theorem
of Spector states that 61 = wl recursive, the Church-Kleene wl -

the first ordinal with no recursive code: so recursive Wy is
admissible; and indeed we have the following notation-free characteri-
zation: 1t is the least admissible ordinal. The 6l—recursive

(& -r.e.) reals are precisely the Ai(vi) reals. The Be—recursive

i1

(62-r,e,) reals are precisely the AQ reals, but since if there

1
(25)
ig a measurable cardinal all constructible reals are A%, the
theorem warns us not to expect anything similar for the case n = 3.
In fact for n > 2, the gituation is quite different for different

'extreme' assumptiong like V = L and measurable cardinal.

Let o,B, «a < B, be any ordinals not necessarily admissible.

DEFINITION. & is stable w.r.t. B iff whenever E is a finite

set of equations in #) and by =t is in #A ), then

E FB tl = t2 - B Fd tl = t2. (In other words, though the B-man may

use deductions not available to the O-character, he obtains no further
a-equations.) Now w is stable w.r.t. no larger ordinals: for consider
the computation of j(uy(y = 1+ y)) where j(x) =0 for all x. The
w-man never finds a y such that y=1+ 3y so Juyly=1+1y)) =0

is defined. If & is stable w.r.t. all B >0, we gay @ 1s stable

Every cardinal > w 1is atable; and using the Addison-Kondo or
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Kondo-NNovikov theorem, 52 is stable. (It is the least stable ordinal.)
If o is stable w.r.t. some B >, then « ig admissible. The class
of stable ordinals is closed (in the order topology), whereas the class

of admissible ordinals is not.

The following definitions will lead to a model theoretic charac-

terization of stable ordinals.

DEFINITION. Let X and K' be transitive sets or classes.

Write X <. K' ("K 1is an elementary submodel of K' w.r.t. z

il

formulae”) if K C K' and every Zl formula with parameters in

K which is true in K' 1is true in K.

THEOREM. i) Let B be admissible. Then @& is stable w.r.t.

. "
g iff Qa Zl LB

- N ; & ]
ii} «a 1is stable iff L, 5, L

DEFINITION. i) @ is projectible into B, in symbols

(0 Ezgiﬁ B, 1iff there is a 1 - 1 «-recursive function whose range

is a subset of PB. (This concept is interesting only when B < ).
ii) o is projectible iff there is a B <«

with o 224 p

iii) the least £ such that o PX95Bis called the
projectum of (.

If o 1is admissible, the projectum of & 1is also admissible,
but is clearly not projectible. If & projs B, we can obtain a set
of notations, each < B, for the ordinals < &. Both Bl and 52

project into w.
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THEOREM. ¢ 1is admissikle but not projectitble 1ff O = w

igs a limit of smaller admissirle ordinals each stable w.r.t. .

We shall see shortly that stahle ordinal: are in a certain
sense the counterparts of large cardinals. as they exhibit, for

example, Mahlo properties. First, some more definitions:

DEFINITION. Tet QTS.H ¢ On’ be the monotonic enumeration
0

of admissible ordinalsz. ¢ 1g recursively inaccessible iff g = a.

1 B s - :
Let (1&]& € On) enumerate the recursively iraccessible ordinals
Let Ty

v8 < Ao = TS}. Mahlo, however, introduced a type of number much

& € On) enumerate the ordinals <@ szatisfying

bigger than all the rumbers in this series. Mahio defined a po—
number to be a regular <& such that every closed and X-unbounded
subset of & contained a regular cardinal. Remembering that

admissible = recurszively regular, we make the following

DEFINITION.
& 1is recursive [-Pq iff « is admissible and every

O-recursive closed X-unhounded sub-.et of <& contains

an admissitle ordinal.

We can go on to define a recursively hnyper-Mahlo number as
an admissible ordinal &, every racur:ive clozed-urnhounded subset
of which contains a recursive po_numher; and =0 on to hyperhyper-Mahlo

numbers, ...

Now if « iz ztable w.r.t. at least one B > .X, then ¢ is

? e

i

recursively hyper-Mahlo,...; in short. « 1s Manlo of all types.



Iv-0-11

One might therefore expect stable @ +to be a recursive equivalent
of very large cardinals. One can also prove that an admissible non-

projectible ordinal > w is Mahlo of all types.

E
The first recursively inaccessible ordinal is w, l, the

least ordinal not recursive in the functional El which tells you

whether a relation on w is a well-ordering.

1
In formal second-order arithmetic, the HE_ or A; compre-

2
hension axiom asserts the existence of any set of integers defined
by a ]Té or éé formula. (Allowing given sets of natural numbers

as parameters.) There is a close correspondence between admissible
ordinals and models of various comprehension axioms. Let

mMa) = P(w) N Ly If o is admissible, 7(a) is a model of the
comprehension axiom (in fact, of a bit stronger theory); If o is

a limit of admissibles, #(c) k-, C.A. If o is admissible and
a limit of admissibles (= recursively inaccessible), %(q) k Aé Gule)

E
(Gandy had previously shown that W(wl l) k Aé ¢.A.)

If « is admissible but not projectible into w, then (@)

satisfies the Hé’CDA. These results have converses which I shall

not state here. (I will talk on this in more detail in Amsterdam.)

AL

o C.A. one must get to a very

Since to get a B-model of the I
high (non-projectible) Mahlo number, the failure of people to con-
struct such a model from below is explained. (A B-model is a model

of second order arithmetic in which the notion of a_well—ordered sub-

set of w 1is absolute. It plays a role similar to that of well-



founded models in set theory. For all comprehansion axioms other than

the Ai, the models we obtain are B—models.)

We now give some more definitions, and then close with some fur-

ther model-theoretic observations.

DEFINITION. Let « ©be admissible. O 1is a quasi-cardinal

iff every 1 - 1 total Q-arithmetic function has CG-unbounded range.
A regular quasicardinal is one such that every partial arith-

metic function with bounded domain has bounded range.

THEOREM. i) « is a constructible cardinal iff every Q-bounded
constructible subset of a is Q-metafinite.
ii) a 1is not projectible iff every CQ-r.e. subset of
is C-metafinite.
iii) @ is a quasi-cardinal iff every Q-bounded Ct-arithme-
tic subset of & is Q-metafinite iff La F PZF + full Aussonderungsschema.

iv) a is a regular quasicardinal iff F PZF + full

replacement schema.

Finally, we observe that the smallest quasicardinal > w is the
ordinal Gandy and Putnam call BO, the ordinal of the minimal B-model
of analysis. In fact, if @ is a quasicardinal (@) is a B-model

of analysis.



